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1 General Introduction

There are a lot of different coordinate systems used in the AXAF program, mostly intended for use
in constructing and aligning the hardware. This memo is intended to give the ASC SDS group’s
current understanding of the relationships between them (Gratings and mirror metrology systems
are not yet included) and to define many more systems, which are useful for data analysis of
observations both in flight and at XRCF.

1.1 Notational conventions
1.1.1 Pixel convention

In all cases where we use discrete pixel numbers, the corresponding pixel coordinates are defined
to be equal to the pixel number at the center of the pixel. We further recommend that for finite
detector planes, the lower left pixel be numbered (1,1) so that its center has coordinates (1.0, 1.0).
If the detector is rectangular with sides of length XMAX, YMAX the pixel coordinates then run
from (0.5, 0.5) in the lower left corner (LL) to (XMAX+0.5, YMAX+0.5) in the upper right corner
(UR) while the pixel numbers in each axis run from 1 to XMAX, 1 to YMAX.

UR
KX
XMAX + 0.5, YMAX+0.!

XMAX+0.0, YMAX+0.0)

TT\/ (1.0,1.0)

LL

(0.5,0.5)

Figure 1: Pixel convention.

1.1.2 Vector and coordinate notation

A bold face symbol e.g. B denotes a point in 3D space. The notation Y(B) denotes the Y
coordinate of point B in the 3-dimensional Cartesian coordinate system A. When we refer to a
point as an argument in this way we usually get lazy and omit the boldface, e.g. Y4(B). The
notation P4(B) denotes the triple (X4(B),Y(B),Z4(B)), i.e. the coordinates of B in the A
coordinate system. (P is not in boldface since it is not a vector - it is in a specific coordinate
system.)



1.1.3 Rotation and translation of Cartesian systems

The general transformation from a cartesian system A to a system B involves a scaling, a translation,
and a rotation. This may be described by seven numbers: the scale factor Kp (choice of units),
the position vector Pg(A0) = (Xp(A0), Ys(A0), Zp(A0)) of the origin of A in the B system, and
the three Euler angles ¢g, 0, ¢r of the rotation R(A,B) from A to B, (see Appendix 1),

cos ¢ cos O cosp —sin¢ppsing sin ¢ cos O cos Yy + cos g sing —sinfg cosYg
= —cospp cosfOpsinyp —singg cosyyp  —singg cosfg sinyg + cos g cos vy sinfg sin g
cos pp sinfg sinpgsinfg cosbOg

Then coordinates of a general point G

Pa(G) = (Xa(G),Ya(G), Za(G)) (2)
may be converted to
Pp(G) = (Xp(G),YB(G), Z5(G)) (3)
using the formula
Pp(G) = R(A, B)K 4pPA(G) + Pp(A0) (4)
If
R(A, B) = Rot(¢, 0p, V) (5)
then
R(B,A) = Rot(r — ¢g,0p,m— ¢p). (6)
Further, if C is related to B by reflection about the X axis, i.e. Yo = —Y3g, Zc = —Zp then
R(A,C) = Rot(pp,m + 0, m — YE). (7)

1.1.4 Spherical polar coordinates

We also use spherical polar coordinate systems. The WCS paradigm describes general rotations of
a spherical polar coordinate system. We define the native cartesian axes X,Y,Z of a spherical polar
system (1,0, ¢) by the equation

(X,Y,Z) =rS(0,¢) = (rcos¢sinb, rsin ¢sin b, r cos f) (8)

so that the north pole is through the positive Z axis and the azimuth is zero along the positive X
axis and 90 degrees along the positive Y axis. Any other choice of spherical coordinates (r, 6, ¢')
may be defined by specifying the Euler rotation matrix which rotates the corresponding native
systems into each other. In the appendix I derive

0" = cos™! (cosOpcosB + sinfgsinfcos(¢p — dg))
(9)
¢ = arg(cosfpsinfcos(¢p — dr) — sinfg cosh, sinfsin(¢p — ¢r)) — ¥p




1.2
1.2.1

AXAF overview
AXAF Reference Points

There are several crucial reference points we use:

H1, the HRMA CAP (Central Aperture Plate) reference point. This is the fundamental
positional alignment reference and the origin of HRMA coordinates.

HO0, the HRMA nodal point. This is the fundamental data analysis positional reference,
although its location in spacecraft coordinates is a derived quantity. It plays two roles: firstly,
it is the nominal ‘thin lens’ position from which we measure off-axis angles at the focal
plane - it’s where the photons ‘appear to come from’. If this were exactly true, we’d have a
constant plate scale, but actually the effective nodal point depends both on energy and off-axis
angle. Nevertheless, we can adopt a conventional nodal point and make astrometric position
corrections as a function of position and energy, relative to the positions derived using that
conventional nodal point.

GO, the Grating nodal point.
G1, the origin of OTG coordinates.

X0, the XRCF coordinate origin which coincides with H1, the HRMA CAP reference point
when HRMA is in its XRCF default position.

X1, the AXAF spacecraft coordinate origin which is a fictitious point out in space behind
the SIM.

F, the HRMA focus (or XSS conjugate focus, at XRCF).

FO0, the point in the XRCF where the HRMA focus lies when the HRMA is at its default
position.

3o, the SIM reference point, which is identical with the HRMA focus F when the SIM is
installed in flight.

S, the nominal focus position on one of the four detectors ACIS-I, ACIS-S, HRC-I, HRC-S.
32, the reference point on the SIM transfer table.
AOQ, the center of the aperture in the spacecraft-to-IUS interface plane.

A1, the center of the aperture at the front edge of the paraboloids (which is the origin of the
ray trace system).

LL, the origin (‘lower left corner’, sic) of one of the 14 chips making up one of the 4 detectors
on the 2 instruments.
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Figure 2: Schematic of interesting points in the spacecraft

1.2.2 Spacecraft coordinates (SC-1.0)

The Spacecraft (Observatory) coordinate system X4, Y4, Z4 (SC/TS ICD 4 Nov 1992, 3.2.1.1.1) is
as follows: [1],[2] The X axis is parallel to the HRMA centerline; the aperture is toward positive
X, while the SIM is at lower values of X. The Y and Z axes are in the plane of the SIM, such that
the ACIS radiator is toward positive Z and the Y axes completes an X, Y, Z right handed set. The
coordinates are also called SCX, SCY, SCZ when we want to refer to a spacecraft coordinate system
in general rather than AXAF in particular. (X4, Y4, Z4) are measured in ‘inches’, which is a unit
of length defined to be exactly 0.02540m. The center of the aperture in the AXAF/IUS interface
plane is defined to have coordinates (500, 0, 0). The spacecraft trunnion plane has SCZ=14. The
coordinates of the HRMA nodal point HO in SC coordinates are (X 4(H0),0,0) where the value of
X4(HO) is 428.116. The focus is at (31.836, 0.0, 0.0).

1.2.3 HRMA coordinates (HRMA-2.0)

The project has defined Cartesian coordinates (X, Yy, Zy) fixed in the HRMA cap midplane,
which are called HRMA coordinates. The origin of HRMA coordinates H1 is at the HRMA
CAP reference point. The HRMA Xy axis is along the HRMA optical axis, and positive X is
toward the entrance aperture. Units of HRMA coordinates shall be mm.

1.2.4 HRMA nodal coordinates (HNC, HRMA-1.1)

The Spacecraft and HRMA coordinate systems are the fundamental ones for hardware alignment,
but for data analysis of observations it’s easier to use the HRMA nodal point HO as origin. This
point is calculated to be offset by 17.577 mm from the HRMA CAP midplane (the value may
change). The HRMA nodal coordinate (HNC) system is (X, Yy, Zy), where

Xy Xy — Xy(HO)
Yy |=| Yu (10)
Zy Zy



where Xy (H0) = —17.577. The finite conjugate focus is at HRMA nodal coordinates (-10258.3,
0.0, 0.0). (IF1-20 Obs/SI ICD). Note that

Xy (SCX — SCX(HO0)) % 25.4
Yy | =] SCYy =254 (11)
Iy SCZ «25.4

where SCX(HO) (or X4(H0)) is +428.116.

In the following table are listed reference points for various parts of the spacecraft. For XRCF,
I give XRCF coordinates in inches for easy comparison with the drawings, although elsewhere in
this document XRCF coordinates are measured in mm.

Table 1: Interesting points in spacecraft and HRMA
nodal coordinates

Flight

Point  Description (Xa,Ya,Z4) (Xn, YN, ZN) Ref
X1 SC coordinate origin (0.0, 0.0, 0.0) (-10874.146, 0.0, 0.0)
F  Flight Focus (31.836, 0.0, 0.0)  (-10065.500, 0.0, 0.0) [1],p.9

Translation Table surface (55.836, 0.0, 0.0)  (-9455.91, 0.0, 0.0) 1],p.17

ISIM to OBA interface (60.336, 0.0, 0.0)  (-9341.6, 0.0, 0.0)  [1],p.9
Gl OTG Origin (369.245, 0.0, 0.0) (-1495.3, 0.0, 0.0)  [1],dr. 301331/3

OTG Datum (370.915, 0.0, 0.0) (-1452.9, 0.0, 0.0)  [1],dr. 301331/3
G0 OTG Node (371.745, 0.0, 0.0) (-1431.810, 0.0, 0.0)  [1], dr.301331/3
H1 HRMA CAP reference point (427.745, 0.0, 0.0) (-9.42, 0.0, 0.0) 1], dr.301331/3
H0O  HRMA nodal point (428.116, 0.0, 0.0) (0.0, 0.0, 0.0) 1], dr.30133/31
Al Front end of paraboloids (462.474, 0.0, 0.0) (872.692, 0.0, 0.0)
A0 Aperture center in IUS I/F  (500.0, 0.0, 0.0)  (1825.85, 0.0, 0.0)  [2],[1],p.9

plane

XRCF

Point Description XXRC’F (IH) (XN, YN, ZN) Ref
FO  XRCF Default Focus ~103.5 (-10258.3, 0.0, 0.0) __[1], dr. 301331/5
Gl OTG Origin at XRCF -60.613 (-1549.0, 0.0, 0.0)  [1]

OTG Datum at XRCF -58.943 (-1506.57, 0.0, 0.0)  [1]
GO OTG Node at XRCF 58.113 (-1485.49, 0.0, 0.0)  [1]
H1 HRMA CAP reference point 0.0 (-9.42, 0.0, 0.0)
HO HRMA nodal point -0.37 (0.0, 0.0, 0.0)

10



1.2.5 Identification convention

For each coordinate system definition used in data analysis, we give an identifier which encodes both
the purpose of the coordinate system and a version number for the coordinate system. As we revise
definitions of the coordinate systems, the version numbers will be changed. The identifiers will be
present in ASC-generated data files so that the coordinates used in data can be unambiguously
determined. (In FITS files, I suggest the use of an ACSYSn keyword to hold the identifiers). For
instance, if the defining constants of ACIS tiled detector coordinates are altered, the new system
will be labelled ACIS-2.1 instead of ACIS-2.0. There was error in the description of the definition
of HSC-1.0 (rev 2.2 of this document and earlier) and so the corrected, consistent definition is
identified as HSC-1.1. Note that a single coordinate system definition (and identifier) may actually
refer to more than one coordinate system, e.g. AXAF-CPC-1.0 defines a coordinate system on each
of the 14 different detector chips separately.

The fundamental coordinate system in flight is the AXAF-SC-1.0 system (spacecraft coordi-
nates), but for data analysis both in flight and at XRCF our primary coordinate system will be the
HRMA-1.1 nodal coordinate system, defined to be fixed in the HRMA mirror. At XRCF, another
fundamental system is the XRCF-1.0 system.

The pixel coordinate systems also have generic identifiers, since some derived data files may hold
both ACIS and HRC (and ROSAT?!) pixel values in the same columns.

Table 2: Coordinate System Catalog

Identifier Name of system Notation Type Origin  Status/Use
AXAF-ACIS-1.0 ACIS chip CHIPX, CHIPY Pixel (CHIP) LL Primary
AXAF-ACIS-2.0 ACIS detector DETX, DETY Pixel (DET) Deleted (Rev 2.3)
AXAF-ACIS-2.2 ACIS detector DETX, DETY Pixel (DET) Primary
AXAF-ACIS-2.3 ACIS detector DETX, DETY Pixel (DET) Alternative
AXAF-ACIS-2.3A  ACIS detector DETX, DETY Pixel (DET) Alternative (XRCI
AXAF-ACIS-3.0  ACIS readout RAWX,RAWY Pixel (RAW) LL Reference
AXAF-CHIP-1.0  Chip CHIPX, CHIPY Pixel (CHIP) Generic
AXAF-CPC-1.0 Chip physical (chc, chc, Zcpc) 3D HO Analysis
AXAF-DET-2.0 Tiled detector DETX, DETY Pixel (DET) Generic
AXAF-DFC-1.0 Default FAM (prc, Yppc, prc) 3D Fo Primary (XRCF)
AXAF-FAM-1.0 FAM (XFAM7 YFAM7 ZFAM) 3D 20 Analysis (XRCF)
AXAF-FP-1.0 Focal Plane Pixel FPX, FPY Pixel Analysis
AXAF-FP-2.0 Dithered Focal DFPX, DFPY Pixel Alternative

Plane
AXAF-GDC-1.0 Grating Diffraction rrqg,drg Z0O Primary?
AXAF-GDP-1.0 Grating Diffraction GDX,GDY Pixel Primary

Plane Pixel
AXAF-GZO-1.0 Grating Zero Order (Xgzo0,Yez0,Zcz0) 3D GO Analysis
AXAF-HRC-1.0 HRC chip CHIPX, CHIPY Pixel (CHIP) LL Deleted (Rev 2.3)

11



AXAF-HRC-1.1
AXAF-HRC-2.01

AXAF-HRC-2.0S
AXAF-HRC-2.1S

AXAF-HRC-2.21

AXAF-HRC-2.2S

AXAF-HRC-2.31

AXAF-HRC-2.3S

AXAF-HRC-3.0
AXAF-HRC-4.0
AXAF-HRC-5.0
AXAF-HRC-6.0

AXAF-HRMA-1.0
AXAF-HRMA-1.1
AXAF-HRMA-2.0
AXAF-HRMA-3.0
AXAF-HRMA-4.0

AXAF-HSC-1.1
AXAF-HSC-2.0
AXAF-HSC-3.0

AXAF-LSI-1.0
AXAF-LSI-1.1
AXAF-OTG-1.0
AXAF-OTG-2.0
AXAF-PSP-1.0
AXAF-PTP-1.0

AXAF-SC-1.0

AXAF-SKY-1.0
AXAF-STF-1.0
AXAF-STF-2.0
AXAF-STT-1.0

AXAF-STT-1.1

AXAF-TP-1.0

AXAF-XRCF-1.0

HRC chip

HRC-I detector
HRC-S detector
HRC-S detector
HRC-I detector
HRC-S detector
HRC-I detector
HRC-S detector
HRC raw pixel
HRC telemetry
HRC degap

HRC tap

XRCF mirror
HRMA nodal
HRMA

SAOSAC

Project Focal Plane
HRMA spherical
HRMA source
HRMA rotation
(pitch and yaw)
Local Science Inst.
Local Science Inst.
Grating Nodal
OTG

Physical Sky Plane
Physical Tangent
Plane

Spacecraft

Sky pixel

SIM Travel Frame
SIM Installation
Frame

SIM Translation
Table

SIM Translation
Table

Tangent Plane pixel
XRCF facility

CHIPX, CHIPY
DETX, DETY
DETX, DETY
DETX, DETY
DETX, DETY
DETX, DETY
DETX, DETY
DETX, DETY
RAWX, RAWY

UHT,VHT

(X1sr,Yrsr, Zrsr)
(X1sr1,Yrsr, Z1s1)
(Xene,Yanc, Zanc)
(Xa,Ya, Za)
(Xpsp,Ypsp, Zpsp)
(Xprp,YPTP, ZPTP)

SCX, SCY, SCZ
or (Xa,Ya,Z4)

X, Y

(Xstr,YsTr, ZsTF)
(Xs1c,Ysrc, Zsic)

(Xsr7, Ysrr, ZsTT)

(Xsr7, Ysrr, ZsTT)

TPX, TPY

Pixel (CHIP)
Pixel (DET)
Pixel (DET)
Pixel (DET)
Pixel (DET)
Pixel (DET)
Pixel (DET)
Pixel (DET)
Pixel (RAW)
Pixel (RAW)
Pixel (CHIP)
Pixel (CHIP)
3D

3D

3D

3D

3D

Spherical
Spherical
Spherical

3D

3D

3D

3D

3D

3D

3D

Pixel (SKY)
3D
3D
3D
3D

Pixel (TP)

(Xxror, YxroF, ZXROF)

LL

LL

LL
LL
HO
HO
H1
Al

HO

HO
HO

GO
G1

HO

X1

X0

Primary

Deleted (Rev 2.3)
Deleted (Rev 2.3)
Deleted (Rev 2.3)
Primary

Primary
Alternative
Alternative
Alternative
Analysis

Deleted

Analysis

Deleted (Rev 2.3)
Analysis
Reference
Reference
Reference

World

World

World

Deleted (Rev 2.3)
Analysis

Analysis
Reference
Analysis

Analysis

Reference
Primary
Analysis
Analysis (XRCF)
Deleted (Rev 2.3)

Analysis

Primary

Analysis (XRCF)

The Status/Use column describes how the coordinate system is used in data analysis:
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e Primary: one of the fundamental coordinate systems for data analysis, will be stored in
standard data products.

e Analysis: Used in standard data processing, at least by implication, as an intermediate step
used in deriving a primary system.

e World: Angular system applied as a world coordinate system to one of the primary systems.

e Alternative: Not required in deriving the primary systems, but may be useful in inspecting
the data.

e Reference: Not expected to be used in data analysis, presented for reference only.

e Deleted: Identifier refers to an earlier definition of the coordinate system which is now con-
sidered obsolete. The revision of this document in which the system was previously defined
is noted.

e Generic: indicates data which may include coordinates from different instruments. For ex-
ample, ACIS and HRC detector coordinates may be lumped together as AXAF-DET-2.0
(presumably in a table with a separate column indicating which instrument is meant for each
row.)

1.3 Observing configurations

In this section I summarize the basic layout, referring to some coordinate systems which will be
defined fully later on.

1.3.1 Flight Configuration

In flight, the orientation of the SIM with respect to the HRMA is fixed. In the flight nominal
configuration, one of the SIs has its nominal focal point at the telescope focus. However, the SIM
can be moved so that the nominal focal point and the telescope focus do not coincide (general flight
configuration).

1.3.2 XRCF configurations

In the XRCF, we have the HRMA mounted on two axes - it can change its yaw (azimuth) and pitch
(elevation), or equivalently the polar angle and polar azimuth. The instrument (SI) is mounted on
either the FAM (Five Axis Mount) or the HXDS (HRMA X-ray Detection System). In the default
configuration C0, the HRMA axis and the SI are aligned with the FOA (Facility Optical Axis)
and the SI nominal focus S is located at the actual focus F. The X-ray Source System (XSS) is
fixed in the XRCF frame and lies on the positive X xrcr axis (see below).

13



pd
i
N
9
m

HO

--—----= N

HRMA

Figure 3: HRMA Nodal and STF Coordinates showing the on-orbit configuration. The SIM Transfer
Table (STT) carrying the instruments moves along the Zg7p axis to select an instrument and along
the Xgrr axis to adjust focus.

In the nominal configuration CN, the HRMA is tilted but the SI is moved so that its normal
X 1,55 axis remains coincident with the HRMA optical axis X x gor. In the most general configuration
the HRMA and SI are both moved relative to the XRCF but the X7 axis is not made to coincide
with the XXRC’F axis.

WARNING: The terms ‘on-axis’ and ‘off-axis angle’ are correctly used to refer to an angle
relative to the optical axis of the HRMA. However, at XRCF they are sometimes used to mean
an angle relative to the Facility Optical Axis, which could lead to confusion. T will always use the
concept of on and off axis to refer to the HRMA optical axis.

The Y57, Z1,51 plane contains the science instrument, which returns coordinate values of events
measured in detector pixels CHIPX, CHIPY from each of several discrete planar ‘chips’ (or MCPs
in the case of HRC). In data analysis we consider two complementary problems:

e The forward case: Given an XRCF configuration, at which chip CHIP_ID and chip pixel
CHIPX, CHIPY will the XSS photons fall? In other words, where do we expect the image to
be?

e The inverse case: Given a photon landing on chip CHIP_ID and chip pixel CHIPX, CHIPY,
from which direction (off-axis angle and azimuth) did the incoming photon approach the
HRMA?

1.3.3 Summary of Configurations

To sum up, the range of different experimental configurations varies in complexity, with extra
coordinate systems required for the more complex cases. Every time you add a new moving part,
you add two new coordinate systems - one in which to describe the motion of the part and one fixed
in the part to describe the positions of components relative to that part. We have:
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Default Configuration CO:

HRMA Sl FAM

YXRCF
Figure 4: XRCF Coordinates showing the general configuration with HRMA, DFC and LSI coor-
dinate systems

e XRCF default configuration, the simplest configuration with source, mirror, and SI all aligned.

e Nominal configuration (XRCF or on orbit), with the mirror and ST aligned but with the source
off axis (XRCF) or with an aspect solution to be applied (on orbit). In this case we can go
directly from the LSI frame to the HRMA frame without worrying about the SIM.

e SIM displaced configuration (XRCF or on orbit), with the SIM travel frame aligned with the
mirror (so that the detector lies parallel to the focal plane) but with the SIM at an arbitrary
position so that the telescope focus isn’t at the standard place on the detector. In this case
we need to deal with the SIM and SIM Travel Frame coordinate systems.

e XRCF general configuration, with the FAM moved so that the SIM travel frame is not neces-
sarily aligned with the mirror axis. In this cases we need to use the FAM and DFC frames to
link the SIM Travel frame to the HRMA frame. This gets pretty ugly!

There are three types of parameter that determine the geometrical configuration of the XRCF
or the flight instrument - calibration parameters that are constant for the duration of the XRCF
calibration, experiment parameters that are constant for an observation, and dynamic parameters
that vary during an observation.

Table 3: Configuration parameters for XRCF observa-
tions

Calibration parameters
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Table 3: Configuration parameters for XRCF observa-

tions
Quantity Description Best guess value
XRCF
f HRMA effective focal length 10258.3
g Rowland Circle Diameter
Uy SI roll angle wrt HRMA in default position | 0.0
Pxror(HO) XRCF coordinates of HRMA nodal point | (0.0,0.0,0.0)
¢gr,Opr, Ypr | Euler angles of FAM misalignment matrix | (0.0,0.0,0.0)

R(XRCF,DFC)

Experiment parameters

Quantity Description Default value
XRCF

SI Sub-instrument in focal plane ACIS-S

Psrr(S) STT coordinates of SI nominal focus (0.0,0.0,190.5)

Psrr(X) STF coordinates of SIM reference point —Psrr(S)

0 (XSS) HRMA Polar off axis angle 0.0

o (XSS) HRMA Polar azimuth 0.0

Crp FAM TInitial polar off axis angle 0 (XSS)
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Table 3: Configuration parameters for XRCF observa-

tions

Cfa

df
Dither_Pattern
Dither_Points
Dither_Dwell

FAM TInitial polar azimuth
Defocus

Dither pattern file
Number of dwell points
Dwell time (s)

¢ (XSS)
0.0

None

0

0.0

Time dependent parameters

Quantity Description Default value
XRCF

Pprc(FAM) | DFC Coords of FAM, XYZ from FAM data | (0.0,0.0,0.0)

Ox,60y,0, DFC orientation of FAM, from FAM data | (0.0,0.0,0.0)

Table 4: Configuration parameters for flight observations

Calibration parameters

Quantity | Description

Best guess value

Flight
f HRMA effective focal length 10065.5
g Rowland Circle Diameter 8633.69
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Uy SI roll angle wrt HRMA in default position | 0.0
Experiment parameters

Quantity | Description Default value
Flight

SI Sub-instrument in focal plane ACIS-S (at launch)

Psrr(S) | STT coordinates of SI nominal focus (0.0,0.0,190.5)

Psrr(X) | STF coordinates of SIM reference point —Ps7r(S)

ag, Op Nominal pointing direction, J2000 No default

To Nominal spacecraft roll angle 0.0

df Defocus 0.0

Time dependent parameters

Quantity | Description Default value
Flight

A,, As Aspect RA and Dec offsets 0.0, 0.0

A, Aspect roll offset 0.0
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Figure 5: XRCF Coordinates showing the general configuration with HRMA and LSI coordinate
systems

1.4 Data Analysis coordinate thread

In the accompanying figure, the data analysis coordinate thread is summarized. This section gives
an overview of the coordinate calculation process; later sections go through each system in detail.

We start off with CHIP pixel coordinates for each planar rectangular surface that intercepts
photons. The size of the CHIP pixels depends on the detector. Associated with CHIP pixel
coordinates are a ‘world’ coordinate system in mm, called CPC (Chip Physical Coordinates). We
wish to determine the direction in which the photon apparently emerged from the HRMA node
in order to hit the detector surface at that pixel; this direction is expressed in HRMA Spherical
Coordinates (HSC) as an off-axis angle and an azimuth. We store the HSC values as another world
coordinate system attached to a two-dimensional pixel plane, the Focal Plane Pixel Coordinates
(FP). The FP pixel size is not neccessarily the same as the CHIP pixel size. FP pixels are centered
on the HRMA optical axis.

To get from CHIP to FP pixels (or equivalently, from CPC to HSC coordinates), we need to go
through several other three-dimensional intermediate coordinate systems: LSI coordinates, which
locate the chips relative to the nominal detector aimpoint; STT coordinates, which give locations
relative to the origin of the SIM translation table; STF coordinates, which give locations relative to
the aperture center of the fixed SIM structure; and HNC coordinates, which give locations relative
to the HRMA node.

After we have the FP pixels, we need to derive TP (Tangent Plane) pixels, which have as
their world coordinate system the HRMA Spherical Coordinates of the photon as it approaches the
mirror from the source. The only differences between FP and TP coordinates are small corrections
to account for the mirror optics, since the HRMA has a magnification of unity on-axis. These
corrections are not yet known, and in prototyping I have taken them to be zero.
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The TP coordinates tell us where the the incoming photon was relative to the spacecraft struc-
ture, but we want to know an absolute location on the sky. We apply the time-resolved aspect
solution to TP coordinates to obtain Sky pixel coordinates, which are centered on a nominal ce-
lestial location and which have celestial angular coordinate systems such as RA and Dec as their
world coordinate system.

For some purposes we want to have an image of the whole detector, but retaining a link to
the original chip pixels. The Tiled Detector (TDET) coordinates solve this problem by artificially
laying the chips flat next to each other. There is no continuous world coordinate system that can
be associated with the tiled detector coordinates.

At XRCF, the conversion between STF and HNC coordinates is not fixed, and may be dithered
with time, which introduces several more intermediate systems. However, the sky pixel and celestial
systems are not applicable, and data will end up in tangent plane coordinates.

Grating data requires some extra calculations using the HNC coordinates to obtain grating zero
order (GZO) coordinates, dispersed grating coordinates (GDP) and ultimately the photon energy.

CHIP.

\ Account for position of lower left in each chip
TDET
Convert from pixels to mm
CPC
Account for orientation of chips in space (3D)

LSI

‘ Locate detector on the SIM table (3D)
STT

L Account for position of SIM table
STF

Now have 3D position relative to SIM structure

Figure 6: Coordinate systems used in data analysis, 1: Instrument related systems.
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FLIGHT PATH XRCF PATH

STF
Angles to imaginary undithered HRMA
\ to inspect dither effects
DFP
Introduce FAM misalignment
FAM
Account for FAM position and orientation
‘ offsets
Account for SIM to
HRMA misalignment DFC
* Take out FAM misalignment
XRCF
‘ Account for HRMA pitch and yaw offsets
N
‘ Convert to angles relative to HRMA node
FP

Figure 7: Coordinate systems used in data analysis, 2: Connecting the instrument to the HRMA.
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N

Angles relative to HRMA
and grating nodes

GFP
FP
Make astrometric corrections
‘ (account for mirror effects)
TP
\ Off axis angles and azimuths
HSC
Apply aspect solution
SKY
Pixels to RA and Dec
CEL
Combine GFP with zero order FP
GZO to get zero order coordinates

Convert to anglesin grating plane

GDP

Apply dispersion solution to get energy

Energy

Figure 8: Coordinate systems used in data analysis, 3: From post-HRMA photon position to
incoming photon properties.
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2 Flight Data Analysis

In this section I describe the process of calculating the sky pixel coordinates from telemetered pixel
numbers.

2.1 Coordinates for the detector chips
2.1.1 CHIP coordinates (DET-1.0)

We consider the AXAF detectors to be made up of collections of planar, finite rectangular ‘chips’
consisting of a rectangular array of XMAX by YMAX square pixels of equal physical size A, on a
side. These logical chips are positioned at various angles and locations in space to intersect photons
coming from the HRMA or the gratings (e.g. for the HRC their spacecraft coordinates correspond
to the surfaces of the MCPs, not of the wire grids). Note that parts of the logical chip may not
correspond to a physical detector surface: an arbitrary subset of the pixels are specified to be ‘active’
and capable of detecting photons.

The pixel at one corner of the chip is labelled (1,1) and this corner is called the lower left corner
(LL) of the chip; other pixels are numbered up to (XMAX, YMAX). This numbering scheme is
extended to form a continuous, real valued coordinate system across the chip, Chip coordinates
(CHIPX, CHIPY), in which the center of pixel (1,1) has coordinates (1.0, 1.0). The coordinates of
LL ( the lower left corner of the lower left pixel) are then (0.5, 0.5) and the coordinates of UR ( the
upper right corner of the rectangle) are (XMAX+0.5, YMAX40.5).

The generic identifier for chip coordinates defined in this way is AXAF-DET-1.0, but the indi-
vidual instruments have their own identifiers.

2.1.2 Chip Physical Coordinates (CPC-1.0)

We also lay down a three dimensional coordinate system, Chip Physical Coordinates

(Xcpe, Yore, Zope) which have units of mm. The CPC X and Y axes are coincident with the chip
X and Y axes, and the Z axis completes a right handed set. The CPC Z coordinate of any point
in the chip has a value of 0.0. The X and Y coordinates run from 0.0 to XLEN and YLEN, where

XLEN = XMAX A, and YLEN = YMAX x A,.
Thus if a photon lands at Chip Physical Coordinates X¢ope, Yopce its chip pixel coordinates are

CHIPX = Xcpce/A,+0.5 (12)
CHIPY = Yepc/A,+0.5

or

Xepe = (CHIPX —0.5)A, (13)
Yepe = (CHIPY —05)A,
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Note that CHIPX and CHIPY are by definition linear, by which I mean that the mapping to
real physical space is linear. Now for ACIS it so happens that the true CCD pixels satisfy this
condition sufficiently accurately, but for HRC the readout values may require linearization.

2.1.3 Telemetry Pixel Numbers

The rawest form of coordinates in our data analysis are the telemetered pixel values. In ACIS data
these correspond to the actual active area detector pixels, which are numbered from 0 to 1023 in
x (column) and y (row). In HRC data, they are artificial; 256 pixels correspond approximately to
the interval between two taps on the wire grids in the detector. In principle, the HRC-I detector
returns pixel numbers from 0 to 16384 in the two axes, named v and v. The HRC-S detector returns
numbers from 0 to 4096 in v and 0 to 16384 in v for each of three sets of grids. In practice, not all
of those pixel values correspond to active areas of the detector and they do not match up with the
edges of the microchannel plates which actually detect the photons. All the telemetered values have
1 added to them once they enter our data system, to match our convention of numbering pixels
starting at 1.

2.1.4 ACIS CHIP coordinates (ACIS-1.0)

Each ACIS chip consists of an array of 1024 x 1024 pixels covering a 24.58 mm square. Thus, each
pixel is 0.024mm on a side or 0.49 arcsec. There are two extra rows making 1024 x 1026, but they
don’t form part of the active area.

The ten ACIS chips have names and integer identifiers, listed in the table below.

Table 5: ACIS Chip Numbers

Chip Name Chip ID

I0
I
12
I3
S0
S1
52
S3
S4
S5

© 00 ~J O Ul W N+ O

The chips calibrated so far have identities as follows; their mapping to the above table of flight
chips is not yet determined.
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Table 6: ACIS Chips

Chip Type

W185C3 Front side
W163C1 Front side
W168C4 Front side
W190C1 Front side
W78C1  Front side
W147C3 Back side
W140C4 Back side
W134C4 Back side

The ACIS readout coordinate system was explained in a 1995 draft memo from J Woo. This
memo defines two coordinate systems, the “pixel coordinate system of the readout file array, f(x,y)”,
which I will call the ACIS Readout Coordinates (XREAD,Y READ) with identifier AXAF-
ACIS-3.0, and the “pixel coordinate system of the active detector image array p(x,y)”, which I will
call ACIS Chip Coordinates, (XCHIP,YCHIP) with identifier AXAF-ACIS-1.0 (these are the
ones that run from 1 to 1024).

ACIS Readout Coordinates may be seen in subassembly cal (SAC) data, but in flight the Chip
coordinates are calculated on board and telemetered directly. We don’t normally deal with the
readout coordinates.

The two systems are related by

YREAD 1 <YRFEAD <1026

YOHIP = { Overclock 1027 < YREAD < 1030
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( Underclock 1< XRFEAD <4
XREAD — 4 5 < XREAD < 260 (Node A)
Overclock 261 < XREAD < 337
Undefined Parallel Transfer 338 < XREAD < 340
Underclock 341 < XREAD < 344
857 — XREAD 345 < XREAD < 600 (Node B
Overclock 601 < XREAD < 677
Undefined Parallel Transfer 678 < XREAD < 680

XCHIP = Underclock 681 < XREAD < 684 (15)

XREAD — 172 685 < XREAD < 940 (Node C)
Overclock 941 < XREAD < 1017
Undefined Parallel Transfer 1018 < XREAD < 1020
Underclock 1021 < XREAD < 1024
2049 — XREAD 1025 < XREAD <1280 (Node D)
Overclock 1281 < XREAD < 1357

| Undefined Parallel Transfer 1358 < XRFEAD < 1360

The inverse transformation is

YREAD = YCHIP
XCHIP+4 1< XCHIP<256  (A)
) 857T—XCHIP 2571< XCHIP <512 (B)
XREAD =\ XCHIP+172 513< XCHIP <768  (C) (16)

2049 — XCHIP 769 < XCHIP <1024 (D)

Unresolved questions: Is the above correct, or even useful? Do the telemetry values start at
1 or 07 Under what circumstances do we get YCHIP values of 1025 and 10267 Do those values
correspond to true active area?

2.1.5 HRC physical layout and Tap Coordinates (HRC-6.0)

Each HRC sub-instrument contains a series of electrical ’taps’ on each axis of the wire grid, which
define a continuous spatial system. The electrical axes are labelled u and v, and we will say there are
N, and N, taps on each axis, numbered starting at 0. In the internal HRC-S electronics the three
MCPs have individually numbered taps but these are combined before we see it in the telemetry.
The coarse tap positions are modified by a fine position which runs from -0.5 to +0.5. Then we
can define an HRC Tap Coordinate System (AXAF-HRC-6.0) which runs from v = —0.5 to
u= N, — 0.5, and v = —0.5 to N, — 0.5.

2.1.6 Deriving linear tap coordinates from HRC telemetry

The instrument electronics records four numbers per axis for each event: the ‘center tap’ (usually
the tap with the maximum voltage), and the voltages of that tap and the one on either side. These

26



A B C D
YREAD
XREAD
YCHIP
LL _—=

XCHIP

Figure 9: ACIS readout nodes

numbers, which are the values which get coded into flight telemetry, we will refer to as HRC
telemetry coordinates (uy, vy;). The four integer components of uy, are

Uo Max tap, 0 to N,, — 1 (‘coarse position’)
= ADC1 Voltage of ucoarse — 1
ht =Y ADC2 Voltage of ucoarse
ADC3 Voltage of ucoarse + 1

(17)

and similarly for v;;). From the telemetry coordinates we can calculate an intermediate quantity,
the fine position

ADC3 — ADC1 (18)
u =
fine = ADC1 + ADC2 + ADC3
Note that
—0.5 < ufpe < +0.5 (19)
We now split off the sign of this fine position correction to obtain the tap side
>
. — { +1 (ufype > 0) (20)
-1 (Uﬁne < 0)
and the fine position magnitude
Au = |ug ol (21)
From these we calculate the linear HRC Tap Coordinates
u = g+ 5,001 (g, $p) Au — 5,C,2(uo, 5) Au? (22)

= vy + 5,C1 (V0 50) Av — 5,Ca(vg, 5) Av?
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The C factors are called the degapping parameters; for HRC they have different values for
each tap and tap side. Earlier detectors (Einstein and Rosat HRI) assumed C factors which were
independent of coarse position.

The simplest choice of the degapping parameters is to take

Cul =Cy =1
(23)
Cu2 = U2 — 07
giving us HRC raw tap coordinates,

Uraw = (Ucoarse + Ufpe) (24)

Vraw = (Vcoarse + Vfipe)
These coordinates do not provide a continuous system over the detector, and an HRC image
plotted in raw coordinates contains ‘gaps’. With some choice of the degapping parameters, we obtain
a continuous (but not linear) system giving an image with no gaps. HRC degapped coordinates

(Udg, Vag). Example values from Murray and Chappell (1989) of C' used to give degapped coordinates

are
Cu =0Cy, =1.049

(25)
Cug - v2 :0110,
SO

udg = (ucoarse + 1.049ugy o — 0.1 ugy o ugpel) (26)
'Udg — (Ucoarse + ]_04:9'Uﬁne - Olluﬁne|uﬁne|)
The coefficients to be used for the HRC have not yet been determined.

2.1.7 HRC Chip Coordinates (HRC-1.1)
The HRC Telemetry Pixel Number System scales the taps by a pixel size A; = 256 to give

TELU = (u+0.5)*xA;—0.5 (27)
TELV = (v—wy+0.5)%A; — 0.5,
integer pixel numbers which start with pixel zero. The offset vy is 64.0 for HRC-S2, 128.0 for HRC-
S3 and zero otherwise; it returns us to a system in which the taps are numbered separately for each
chip.
For compatibility with other data archives, we add one to these engineering coordinates to get
HRC Chip Coordinates (AXAF-HRC-1.0)
CHIPX = (u+0.5)*xA;+0.5 (28)
CHIPY = (v—uvp+0.5)%A;+0.5
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giving a system where the center of the first pixel has coordinate 1.0.

In this system, 1 pixel = 0.00643 mm = 0.13 arcsec. The size of one tap is 1.646mm. Now this
coordinate system actually covers a larger area than the true possible coordinates. For instance,
v taps 0 and 1 for HRC-S1 are missing, so the lowest possible v coordinate in the telemetry for
HRC-S is 1.5 (corresponding to tap 2 with fine position -0.5) but even this does not correspond to
a valid detected event position. Nevertheless, we will define our logical coordinate system to cover
the full range of coordinates starting at CHIPX, CHIPY = 0.5 (lower left corner of first pixel).
The previous version of this document defined chip coordinate system AXAF-HRC-1.0 which did
not cover this full logical range and had a slightly different origin; the current system is denoted
AXAF-HRC-1.1.

The center of HRC-S2 is then at (u,v) = (7.5,95.5) and the gaps between the MCPs are at v
values of 62.96 to 64.12 and 124.88 to 126.04. I arbitrarily set the chip boundaries at 63.0 and 126.0
so that each chip has a length of 63.0 taps.

Table 7: HRC electronically meaningful coordinate
ranges

Chip Vg U v CHIPX CHIPY

HRC-I 0.0 0.0 to 63.0 0.0 to 63.0 0.5 to 16128.5 0.5 to 16128.5
HRC-S1 0.0 0.0 to 15.0 1.5to63.5 0.5 to 3840.5 384.5 to 16384.5
HRC-S2 64.0 0.0 to 15.0 -0.5to 63.5 0.5 to 3840.5 0.5 to 16384.5
HRC-S3 128.0 0.0 to 15.0 -0.5to 61.5 0.5 to 3840.5 0.5 to 15873.5

Now let’s look at the boundaries on HRC-S and HRC-I more closely. We keep extra figures for
self-consistency only assuming a tap scale of 1.6460 exactly, and measure positions starting at the
physical position corresponding to chip pixel position 0.5 (bearing in mind this may be outside of
the wire grid).
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I used the following information on the HRC-S:

Tap size is 1.646 mm (M. Juda)

16384 pixels = 105.344 mm: logical chip size = tap size 1.646 mm x 64 taps
MCP physical size 100.000 mm x 27.000 mm from ’TOP MCP COORDINATES’ drawing
Total logical length is 3 x 105.344 mm

Total physical length is 3 x 100.000 mm + 2 x gap size = 1.905 mm.

52 Center is center of both total logical and total physical length.
Coating extends 94.5mm on outer MCPs and 16mm wide (M. Juda)

This information leads to the following MCP layout:

Area covered by pixel numbering

l:| Physical size of MCP
l:| Active areaof MCP

_ Coated areaof MCP

16384 pixels 16384 pixels 16384 pixels

Figure 10: Relationship of HRC-S pixels to the physical instrument.

Table 8: HRC-S boundaries

Boundary Tap v Pos, mm Seg No. Yeope, mm CHIPY,
(AXAF-HRC-6.0) (AXAF-CPC-1.0) (AXAF-

S1 Logical Left Edge -0.5 0.000 1 0.000 0.5

S1 Electronic Left Edge  1.50 3.292 1 3.292 512.5

S1 MCP Left Edge 3.21 6.111 1 6.111 950.3

S1 Coating Edge 6.55 11.611 1 11.611 1806.4

S1 Logical Right Edge 63.50 105.344 1 105.344 16384.5

S2 Logical Left Edge 63.50 105.344 2 0.000 0.5

S1 MCP Right Edge 63.97 106.111 2 0.767 119.8

S2 MCP Left Edge 65.12 108.016 2 2.672 416.1

30



S2 Center 95.50 158.016 2 52.672 8192.5
S2 MCP Right Edge 125.88 208.016 2 102.672 15968.9
S3 MCP Left Edge 127.03 209.921 2 104.577 16265.4
S2 Logical Right Edge 127.50 210.688 2 105.344 16384.5
S3 Logical Left Edge 127.50 210.688 3 0.000 0.5

S3 Coating Edge 184.45 304.421 3 93.733 14578.8
S3 MCP Right Edge 187.79 309.921 3 99.233 15434.2
S3 Electronic Right Edge 189.50 312.740 3 102.052 15872.6
S3 Logical Right Edge 191.50 316.032 3 105.344 16384.5
Boundary Tap u Xepo, mm  CHIPX, pix

MCP Edge -0.702 -0.332 -51.1

Logical Edge -0.500 0.000 0.5

Active Area 1.425 3.168 493.3

Coating Edge 2.640 5.168 804.3

Center 7.500 13.168 2048.5

Coating Edge 12.360 21.168 3292.7

Active Area 13.575 23.168 3603.8

Logical Edge 15.500 26.336 4096.5

MCP Edge 15.702 26.668 4148.2

N

STT

STT

Figure 11: HRC-I pixel axes.

Table 9: HRC-I boundaries
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Boundary Tap uor v Xgpe or Yepe, mm  CHIPX or CHIPY, pix

Logical Edge -0.500 0.000 0.5
MCP Edge 1.123 2.672 416.1
Active Area  3.250 6.172 960.4
Coating Edge 4.161 7.672 1193.7
Center 31.500 52.672 8192.5
Coating Edge 58.839 97.672 15191.3
Active Area  59.750 99.172 15424.6
MCP Edge 61.877 102.672 15968.9
Logical Edge  63.500 105.344 16384.5

The CPC coordinates run from 0.0 to 26.33 (X¢pe for HRC-S) and from 0.0 to 105.3 (Y¢pe for
HRC-S and both axes for HRC-I).

The active area of each microchannel plane is smaller, and the area coated with photocathode
is smaller still. For HRC-I, the chip is 100 x 100 mm, with a 93 x 93 mm active area and a 90 x
90 mm coated area. For HRC-S, each chip is 100 x 27 mm, the active area is 100 x 20 mm, and
the coated area is 94.5 x 16.0 mm. except for HRC-S2 where the coated area is 100 x 16 mm.
Using these numbers, we derive the locations of the various areas in CPC (mm) and Chip (pixel)
coordinates listed above.

2.2 Tiled Detector Coordinates (DET-2.0)

The AXAF detector chips do not lie in a plane; if we want to represent the detector as a whole, we
can project from three dimensions to two and retain correct physical distances, but then the physical
detector pixels do not have constant area in projected pixels, so we lose the information about which
actual pixels were involved in detecting a photon. For many calibration purposes we wish to retain
the information on individual chip pixels but look at all the chips at once on a flat image. In this
case the detailed relative geometry of the chips is not important, and we can (in software) lay them
flat next to each other. We choose to do this with the chips in approximately their correct relative
orientation, but with the chip edges parallel and the gaps between the chips enlarged to be visible
by inspection and chosen to be an integral number of pixels wide. This artificial tiling of the chips
is accomplished in Tiled Detector Coordinates. The simplest transformation between Tiled
Detector Coordinates and Chip pixel coordinates is a simple offset of an integer number of X and Y
pixels for each chip. However, some of the chips are at 90 degrees to each other, so we may need to
rotate X and Y. For HRC-I we may also want to rotate by 45 degrees (since their detector doesnt
have real pixels we dont lose info by doing this), and we have to take into account that the chip
coordinates have a different handedness than for the other detectors, in that a right-handed triad
has its third axis to negative spacecraft X. And for ACIS we want to have integer pixels smaller
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than the actual pixels to achieve maximum resolution. Units of Tiled Detector Coordinates are
pixels.

DETX \ _ A 1 0 cos b; sin 6, CHIPX — 0.5 N X0; +0.5 (29)
DETY | ~*'\ 0 H; —sinf; cosb; CHIPY — 0.5 Y0, +0.5
where the values of H;, A; and 0; are different for each chip. H; gives the handedness of the planar

rotation and has values +1 or —1, A; gives the sub-pixel resolution factor, and 6; gives the rotation
angle of the chip axes with respect to the detector coordinate axes.
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Zcpc A
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Figure 12: The relationship between CHIP and Tiled Detector coordinates.

Tiled Detector Coordinates are used for applying bad pixel maps, etc. Below I tablulate several

alternative definitions of Tiled Detector Coordinates for each instrument. I have given two systems
for HRC-S:

e HRC-2.2S places the chips next to each other with the gaps equal to their physical size, while
e HRC-2.1S places them one above the other to make a square picture (An earlier HRC-2.0S
system had a mistake in it).
I have defined a single tiled detector plane for the entire ACIS-T and ACIS-S combined instru-

ment.

o AXAF-ACIS-2.2 defines a system centered on the ACIS-T detector. The chip coordinates of
the ACIS-I nominal focus are estimated to be (61.3, 963.5) on ACIS-I1 with corresponding
detector coordinates (4167.5, 4167.3).

e AXAF-ACIS-2.3 is identical to AXAF-ACIS-2.2 but shifted by 631 pixels in the DETX direc-
tion. The related system AXAF-ACIS-2.3A has pixels 5 times smaller (A; = 5) and will be
used for handling XRCF data. For flight, I recommend that the ACIS-2.2 system be used and
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sub-pixel resolution be addressed by keeping real-valued pixels when neccessary, and creating
an image by using fractional-pixel bins if superresolution is desired. For XRCF, I recommend
that ACIS-2.3A be used for storing short integer pixel locations in event lists; this allows us
to store to sub-pixel precision within the current software limitations that restrict us to short
integers. However, [ recommend that for most purposes ACIS-2.3 with the true, coarser pixels
should be used for creating images, by using a blocking factor of 5 (or multiple thereof).

e The AXAF-HRC-2.2T system rotates the HRC-I chip coordinates by 45 degrees to align the
DETX, DETY axes with the SIM axes. It also restores the handedness of the coordinates to
be the same as for the other detectors.

e The AXAF-HRC-2.31 system is provided as an alternative, involving less computation. The
handedness of the axes is corrected, but the rotation is not applied and the resulting image is
smaller.

The definitions of the tiled systems are given in terms of chip systems AXAF-ACIS-1.0 and
AXAF-HRC-1.1.

Table 10: Tiled Detector Plane systems

System Size X Center, Y Center Use

AXAF-ACIS-2.2 8192 x 8192 (4096.5, 4096.5) Standard, Flight?
AXAF-ACIS-2.3A  32768x32768  (16384.5, 16384.5)  XRCF

AXAF-HRC-2.21 32768 x 32768 (16384.5, 16384.5)  Standard
AXAF-HRC-2.31 16384 x 16384 (8192.5, 8192.5) Alternative
AXAF-HRC-2.2S 49152 x 4096  (24576.5, 2048.5) Standard
AXAF-HRC-2.3S 16384 x 16384 (8192.5, 8192.5) Alternative (and XRCF?)

Table 11: Parameters of Tiled Detector Coordinate defi-

nitions
AXAF-HRC-2.21 HRC-I 315 1 16384.0 27969.2375 -1
AXAF-HRC-2.31 HRC-I 90 1 0.0 0.0 -1
AXAF-HRC-2.2S HRC-S1 270 1  49152.0 0.0 1
AXAF-HRC-2.2S HRC-S2 270 1  32768.0 0.0 1
AXAF-HRC-2.2S HRC-S3 270 1 16384.0 0.0 1

34



AXAF-HRC-2.35
AXAF-HRC-2.35
AXAF-HRC-2.35

AXAF-ACIS-2.2
AXAF-ACIS-2.2
AXAF-ACIS-2.2
AXAF-ACIS-2.2
AXAF-ACIS-2.2
AXAF-ACIS-2.2
AXAF-ACIS-2.2
AXAF-ACIS-2.2
AXAF-ACIS-2.2
AXAF-ACIS-2.2

AXAF-ACIS-2.3
AXAF-ACIS-2.3
AXAF-ACIS-2.3
AXAF-ACIS-2.3
AXAF-ACIS-2.3
AXAF-ACIS-2.3
AXAF-ACIS-2.3
AXAF-ACIS-2.3
AXAF-ACIS-2.3
AXAF-ACIS-2.3

AXAF-ACIS-2.3A
AXAF-ACIS-2.3A
AXAF-ACIS-2.3A
AXAF-ACIS-2.3A
AXAF-ACIS-2.3A
AXAF-ACIS-2.3A
AXAF-ACIS-2.3A
AXAF-ACIS-2.3A
AXAF-ACIS-2.3A
AXAF-ACIS-2.3A

HRC-S1
HRC-S2
HRC-S3

ACIS-I0
ACIS-I1
ACIS-12
ACIS-I3
ACIS-S0
ACIS-S1
ACIS-S2
ACIS-S3
ACIS-54
ACIS-S5

ACIS-I0
ACIS-I1
ACIS-12
ACIS-I3
ACIS-S0
ACIS-S1
ACIS-S2
ACIS-S3
ACIS-54
ACIS-S5

ACIS-I0
ACIS-I
ACIS-12
ACIS-I3
ACIS-S0
ACIS-S1
ACIS-S2
ACIS-S3
ACIS-54
ACIS-S5

270
270
270

90
270
90
270

O OO OO

270
90
270

o O o oo

90
270
90
270

S OO OO

—_

— e e e e e e e — e e e e e e e el

Ct Ot Ot Ot Ot Ot Ot Ot Ot Ot

16384.0 9216.0
16384.0 14336.0
16384.0  19456.0

3061.0  5131.0
5131.0  4107.0
3061.0  4085.0
5131.0  3061.0
791.0 1702.0
1833.0  1702.0
2875.0  1702.0
3917.0  1702.0
4959.0  1702.0
6001.0  1702.0

2430.0  5131.0
4500.0  4107.0
2430.0  4085.0
4500.0  3061.0
160.0 1702.0
1202.0  1702.0
2244.0 1702.0
3286.0 1702.0
4328.0  1702.0
5370.0  1702.0

12150.0  25655.0
22500.0 20535.0
12150.0 20425.0
22500.0 15305.0
800.0 8510.0
6010.0  8510.0
11220.0 8510.0
16430.0  8510.0
21640.0  8510.0
26850.0 8510.0

—_ = =

— e e e e e e e e — e e e e e e e el

— = = e e e e e e

35



Table 12: Coordinates of Nominal Focus Position

Instrument DET System DETX, DETY  CHIPX, CHIPY DET.D
ACIST AIl AXAF-ACIS-2.3A (17687.5, 16744.5) (61.3, 963.3) ACIS-I1
ACIS-T AI2 AXAF-ACIS-2.3A  (17687.5, 16014.5) (961.7, 963.3)  ACIS-I3
ACIS-S AXAF-ACIS-2.3A  (17686.5, 6972.5)  (251.9, 512.5)  ACIS-S3

ACIS-T ATl AXAF-ACIS-2.2  (4168.7, 4168.3)  (61.3, 963.3) ACIS-T1
ACIS-T AI2 AXAF-ACIS-2.2  (4168.7, 4022.7)  (961.7,963.3)  ACIS-I3
ACIS-S AXAF-ACIS-22 (41689, 2214.5)  (251.9, 512.5)  ACIS-S3

HRC-I AXAF-HRC-2.11  (16384.5, 16384.5) (8192.5, 8192.5) HRC-I
HRC-S AXAF-HRC-2.2S  (23954.8, 2048.5)  (2048.5, 8814.2) HRC-S2
HRC-S AXAF-HRC-2.3S  (7570.8, 16384.5)  (2048.5, 8814.2) HRC-S2

2.3 Three dimensional location of detector pixels
2.3.1 Local Science Instrument coordinates (LSI-1.1)

The next step in data analysis is to account for the orientations of the tilted chips in three di-
mensional space. Local Science Instrument (LSI) coordinates (basically the Focal Plane Science
Instruments frame of TRW D17388) allow us to describe positions in three dimensions relative to
the nominal aimpoint on one of the science instruments (ACIS-I, ACIS-S, HRC-T or HRC-S). The
LSI frame axes are lined up with the spacecraft and HRMA nodal axes (in the nominal configura-
tion) but are fixed in the science instrument (SI). Each instrument has a nominal aimpoint S (ACIS
has two, but I adopt AIl as the default one) which serves as the origin of the LSI frame (X, Y7, Z1).
The X-axis is normal to the detector, with the Y axis in the dispersion direction and the Z axis
along the translation direction, so that they are coincident with the HRMA and spacecraft Y and
Z axes when everything is lined up in the usual way.

Note that the image falling on the chip is inverted so that on the final reconstructed image a
‘lower left’ corner will actually be in the upper right. (Is that correct?).

The transformation between CPC and LSI coordinates is defined by specifying the CPC and
LST coordinates of each of the four corners of the chip.

In going from an incident ray vector to a CPC pixel position we need to determine the intersection
of the ray line and the pixel plane. Let’s consider a set of position vectors with origin at S (i.e.
working in the LSI frame).

A general point on the plane is

r = po + Xcpcex + Yopcey (30)
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Figure 13: The relationship between CHIP, LSI and STT coordinates.

where pg is the origin of CPC coordinates, and ey and ey are the unit vectors along the CPC axes,
with ez as the unit normal to the plane.

This immediately gives the LSI coordinates, and hence the HRMA nodal coordinates, of a
point on the chip, which we can use to find the off-axis angle by converting to HRMA spherical
coordinates, and hence the direction of the incoming photon.

We can recast this in our usual rotational formulation,

Prs1(G) = Prsi(LL) + R(CPC, LST) Pope(G) (31)

where the matrix is

(eX)X (eY)X (eZ)X
R(CPC,LSI)=| (ex)y (ey)y (ez)y (32)
(ex)z (6Y)Z (ez)z

~—

The reverse process (CPC coordinates from incident photon) is a little harder. The general ray

is
r=1Ilg+ N (33)

where [y is an arbitrary point on the ray, I is the ray direction, and A labels positions along the ray.
The intersection with the plane is then at

(po —lo)-€z

r = lo +
l.ez

l (34)
and we find CPC X and Y by taking the dot product with the unit vectors,
Xcpo=7r.ex, Yopc=r.ey (35)
Let us denote the position vectors of the four chip corners as LL, UL, U R,LR. Then
po=LLex=LR—-LL ey =UL—- LL (36)

and
e; =ex N ey. (37)
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In the following tables we list the coordinates of each corner of each chip. We give coordinates
for each of the ACIS chips in both the ACIS-T and ACIS-S LSI systems, since we may take data from
ACIS-S chips while ACIS-I is in the focus or vice versa. The systems are simply offset by 46.88mm
in the Zpg; direction. The ACIS data is from ACIS-SOP-01, and the HRC data is deduced from
information provided by M. Juda.
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Table 13: ACIS Chip corner locations in ACIS-T LSI coordi-

nates
Chip Corner CPC coords ACIS-I LSI coords
10 LL (0.0, 0.0, 0.0) (2.361, -26.484, 23.088)
LR (24.58, 0.0, 0.0) (1.130, -26.546, -1.458)
UR (24.58, 24.58, 0.0)  (-0.100, -2.001, -1.458)
UL (0.0, 24.58, 0.0) (1.130, -1.939, 23.088)
11 LL (0.0, 0.0, 0.0) (1.130, 23.086, -1.458)
LR (24.58, 0.0, 0.0) (2.360, 23.024, 23.088)
UR (24.58, 24.58, 0.0)  (1.130, -1.521, 23.088)
UL (0.0, 24.58, 0.0) (-0.100, -1.459, -1.458)
12 LL (0.0, 0.0, 0.0) (1.130, -26.546, -1.997)
LR (24.58, 0.0, 0.0) (2.361, -26.484, -26.543)
UR (24.58, 24.58, 0.0)  (1.130, -1.939, -26.543)
UL (0.0, 24.58, 0.0) (-0.100, -2.001, -1.997)
13 LL (0.0, 0.0, 0.0) (2.361, 23.024, -26.543)
LR (24.58, 0.0, 0.0) (1.131, 23.086, -1.997)
UR (24.58, 24.58, 0.0)  (-0.100, -1.459, -1.997)
UL (0.0, 24.58, 0.0)  (1.130, -1.521, -26.543)
SO LL (0.0, 0.0, 0.0) (0.744, -81.051, -59.170)
LR (24.58, 0.0, 0.0) (0.353, -56.478, -59.170)
UR (24.58, 24.58, 0.0)  (0.353, -56.478, -34.590)
UL (0.0, 24.58, 0.0) (0.744, -81.051, -34.590)
S1 LL (0.0, 0.0, 0.0) (0.348, -56.047, -59.170)
LR (24.58, 0.0, 0.0) (0.099, -31.473, -59.170)
UR (24.58, 24.58, 0.0)  (0.099, -31.473, -34.590)
UL (0.0, 24.58, 0.0) (0.348, -56.047, -34.590)
S2 LL (0.0, 0.0, 0.0) (0.096, -31.042, -59.170)
LR (24.58, 0.0, 0.0) (-0.011, -6.466, -59.170)
UR (24.58, 24.58, 0.0)  (-0.011, -6.466, -34.590)
UL (0.0, 24.58, 0.0) (0.096, -31.042, -34.590)
S3 LL (0.0, 0.0, 0.0) (-0.011, -6.035, -59.170)
LR (24.58, 0.0, 0.0) (0.024, 18.541, -59.170)
UR (24.58, 24.58, 0.0)  (0.024, 18.541, -34.590)
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Table 14: ACIS chip corner locations in ACIS-S LSI coordi-

nates
Chip Corner CPC coords ACIS-S LSI coords
10 LL (0.0, 0.0, 0.0) (2.361, -26.484, 69.968)
LR (24.58, 0.0, 0.0)  (1.130, -26.546, 45.422)
UR (24.58, 24.58, 0.0)  (-0.100, -2.001, 45.422)
UL (0.0, 24.58, 0.0) (1.130, -1.939, 69.968)
11 LL (0.0, 0.0, 0.0) (1.130, 23.086, 45.422)
LR (24.58, 0.0, 0.0) (2.360, 23.024, 69.968)
UR (24.58, 24.58, 0.0)  (1.130, -1.521, 69.968)
LL (0.0, 24.58, 0.0) (-0.100, -1.459, 45.422)
12 LL (0.0, 0.0, 0.0) (1.130, -26.546, 44.883)
LR (24.58, 0.0, 0.0) (2.361, -26.484, 20.337)
UR (24.58, 24.58, 0.0)  (1.130, -1.939, 20.337)
UL (0.0, 24.58, 0.0) (-0.100, -2.001, 44.883)
13 LL (0.0, 0.0, 0.0) (2.361, 23.024, 20.337)
LR (24.58, 0.0, 0.0) (1.131, 23.086, 44.883)
UR (24.58, 24.58, 0.0)  (-0.100, -1.459, 44.883)
UL (0.0, 24.58, 0.0)  (1.130, -1.521, 20.337)
S0 LL (0.0, 0.0, 0.0) (0.744, -81.051, -12.290)
LR (24.58, 0.0, 0.0) (0.353, -56.478, -12.290)
UR (24.58, 24.58, 0.0)  (0.353, -56.478, 12.290)
UL (0.0, 24.58, 0.0)  (0.744, -81.051, 12.290)
S1 LL (0.0, 0.0, 0.0) (0.348, -56.047, -12.290)
LR (24.58, 0.0, 0.0) (0.099, -31.473, -12.290)
UR (24.58, 24.58, 0.0)  (0.099, -31.473, 12.290)
UL (0.0, 24.58, 0.0) (0.348, -56.047, 12.290)
S2 LL (0.0, 0.0, 0.0) (0.096, -31.042, -12.290)
LR (24.58, 0.0, 0.0) (-0.011, -6.466, -12.290)
UR (24.58, 24.58, 0.0)  (-0.011, -6.466, 12.290)
UL (0.0, 24.58, 0.0) (0.096, -31.042, 12.290)
S3 LL (0.0, 0.0, 0.0) (-0.011, -6.035, -12.290)
LR (24.58, 0.0, 0.0)  (0.024, 18.541, -12.290)
UR (24.58, 24.58, 0.0) (0.024, 18.541, 12.290)
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Table 15: HRC chip (i.e. grid) corner locations in LSI coor-

dinates
Chip Corner CPC coords HRC-I,S LSI coords
HRC-I LL ( 0.000 , 0.000 , 0.000 ) ( 0.000 , 0.000 , 74.489 )
HRC-I LR ( 105.344 , 0.000 , 0.000 ) ( 0.000 , 74.489 , 0.000 )
HRC-I UR ( 105.344 , 105.344 , 0.000 ) ( 0.000 , 0.000 , -74.490 )
HRC-1 UL ( 0.000 , 105.344 , 0.000 ) ( 0.000 , -74.489 , 0.000 )
HRC-S1 LL ( 0.000 , 0.000 , 0.000 ) (2.622 ,161.984 , -13.168 )
HRC-S1 LR ( 26.336 , 0.000 , 0.000 ) (2.622 ,161.984 , 13.168 )
HRC-S1  UR (26.336 , 105.344 , 0.000 )  ( 0.000 , 56.672 , 13.168 )
HRC-S1 UL ( 0.000 , 105.344 , 0.000 ) ( 0.000 , 56.672 , -13.168 )
HRC-S2 LL ( 0.000 , 0.000 , 0.000 ) ( 0.000 , 56.672 , -13.168 )
HRC-S2 LR ( 26.336 , 0.000 , 0.000 ) ( 0.000 , 56.672 , 13.168 )
HRC-S2 UR (26.336 , 105.344 , 0.000 )  ( 0.000 , -48.672 , 13.168 )
HRC-S2 UL ( 0.000 , 105.344 , 0.000 ) ( 0.000 , -48.672 , -13.168 )
HRC-S3 LL ( 0.000 , 0.000 , 0.000 ) ( 0.000 , -48.671 , -13.168 )
HRC-S3 LR ( 26.336 , 0.000 , 0.000 ) ( 0.000 , -48.671 , 13.168 )
HRC-S3 UR (26.336 , 105.344 , 0.000 )  ( 2.248 , -153.991 , 13.168 )
HRC-S3 UL ( 0.000 , 105.344 , 0.000 ) (2.248 , -153.991 , -13.168 )

The following table gives the Euler rotation angles for the chips. The LSI to CPC transformation
is more intuitive; the first angle ¢ indicates the tilt with respect to the LSI plane (with HRC-I
having ¢ = 180 to indicate being completely flipped over, another way of expressing the different
handedness of its axes); and the third angle v indicates the rotation of the chip in the LSI Y,Z

plane relative to chip

I0.

Table 16: Euler angles in degrees for CPC to LSI coor-

dinates
Chip CPC to LSI LSI to CPC
10 Rot(180, 92.875, 177.129 ) Rot( 2.871, 92.875, 0.0 )
I1 Rot( 0, 92.872, 182.869 ) Rot( -2.869, 92.872, 180.0)
I2 Rot(180, 87.125, 177.131 ) Rot( 2.869, 87.125, 0.0)
I3 Rot( 0, 87.128, 182.871) Rot(-2.871, 87.128, 180.0)
SO Rot( 90.0, 90.0, 179.088) Rot( 0.912, 90.0, 90.0 )
S1 Rot( 90.0, 90.0, 179.419) Rot( 0.581, 90.0, 90.0 )
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52 Rot( 90.0, 90.0, 179.751)  Rot( 0.249, 90.0, 90.0 )
S3 Rot( 90.0, 90.0, 180.082)  Rot(-0.082, 90.0, 90.0 )
S4 Rot( 90.0, 90.0, 180.424)  Rot(-0.424, 90.0, 90.0 )
S5 Rot( 90.0, 90.0, 180.746)  Rot(-0.746, 90.0, 90.0 )
HRC-I  Rot(-135.0, 90.0, 0.0) Rot( 180.0, 90.0, -45.0)
HRC-SI  Rot(0.0, 90.0, 181.426) Rot(-1.426, 90.0, 180.0)
HRC-S2  Rot(0.0, 90.0, 180.0) Rot( 0.0, 90.0, 180.0)

HRC-S3  Rot(0.0, 90.0, 178.778) Rot( 1.222, 90.0, 180.0)

For the record, the positions of the physical edges of the HRC MCPs, from which the grid edges
were deduced, are given in an appendix.

The HRC chip corner data was derived from a drawing supplied by A. McKay. It has been
assumed that the coordinates given in that drawing are effectively HRC-I LSI coordinates but
measured in inches.
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2.3.2 The SIM Translation Table Frame (STT-1.0)

Our next step is to locate the instruments relative to one another. The SIs are rigidly mounted to
the SIM Translation Table, which is mounted either in the spacecraft or (at XRCF) on the FAM. We
specify the relative positions of the SIs to each other in SIM Translation Table (STT) coordinates
which are fixed in the SIM Translation Table. Each SI has its own nominal focal point S, and local
coordinate system with origin at that focal point. The SI local coordinate systems (LSI frames) are
parallel to each other and to the STT frame, with a simple origin offset. STT coordinates are also
called SIM coordinates, but so are STF coordinates described below, so I don’t use ‘SIM coordinates’
to avoid ambiguity. STT coordinates (Xsrr, Ysrr, Zsrr) describe the locations of objects attached
to the SIM.

In earlier versions of this memo the nominal position of the SIM was defined to be the AS1
aimpoint; however T now use the SIM coordinate system origin defined in drawing E445944 (1996
Mar 15) instead of that in [1], drawing 301438 (1995 Aug 31).

Each ST (ACIS-I, ACIS-S, HRC-I, HRC-S) has its own nominal focus position, which is defined
in the SIM Translation Table (STT) coordinate system. The STT coordinates of a point may be
found from its LSI coordinates by

XSTT XL XSTT(S)
( Ysrr ) = ( Y;, ) + ( Ysrr(S) ) (38)
ZSTT ZL ZSTT(S)

Here are the STT coordinates for the nominal focus positions:

Table 17: SIM position offsets for nominal focus positions

Values of Pspr(S), i.e. offsets S — %
ATl ACIS-T offset (0.0, 0.0, 237.4)
AT2 ACIS-T offset (0.0, 0.0, 233.9)
AS1 ACIS-S offset (0.0, 0.0, 190.5)
(
(

HI1 HRC-I offset (015, 0.0, -126.6)
HS1 HRC-S offset  (0.10, 0.0, -250.1)

The LSI origins are at AI1, AS1, HI1 and HS1. AI2 is a reserve ACIS aimpoint. The offsets in
the X direction are taken from the Obs/SI ICD [1], Appendix A, p.2.
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Figure 14: Scale drawing of the (Ysrr, Zsrr) plane showing relative positions of instruments.
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2.3.3 SIM Travel Frame coordinates

We now define an intermediate coordinate system (Xgsrp, Ysrr, Zsrr) called the SIM Travel Frame.
We describe the motion of the SIM in this frame, which is coincident with the SIM frame (see below)
when the STM is at its nominal position. In flight the SIM Travel Frame is just an offset from HRMA
nodal coordinates, but at XRCF the SIM Travel Frame may be at an arbitrary orientation and origin
offset with respect to the HRMA, and is our key to determining the dither solution. In flight, the
SIM axes are parallel to the HRMA axes, and when the SIM is at its nominal position ¥, the Y,Z
axes of SIM and HRMA coincide. As the SIM table moves, the coordinates of ¥ in the SIM Travel
Frame change, and so do the coordinates of an arbitrary point fixed to the STT:

Xsrr Xsrr Xsrr(X)
Ysrr = | Ysrr + | Ysrr(Y) (39)
ZsTr ZsrT Zsrr(X)

Combining this with the LSI to STT translation we derive

Xsrr Xy, Xsrr(S) Xsrr(X)
Ysrr =| Yz + | Ysrr(S) + | Ysrr(Y) (40)
ZsTF Z1, Zstr(S) Zsrr(X)

These two offsets from LSI coordinates are the offset from the SI aimpoint to the SIM table
origin and the offset of the SIM table origin from the SIM axis. Normally we move the SIM table so
that these offsets cancel, and the SI aimpoint is on the SIM axis (which should also be the telescope
optical axis). Thus in normal use LSI and STF coordinates are identical and we don’t have to
bother with STT and STF at all. But this won’t always be true, for instance if we observe with
ACIS alternate aimpoint AI2.

Note: The STF frame is a simple offset from the SIM coordinate frame defined in TRW D17388,
which has an inconvenient origin and units, and a confusing name:

XsTF Xsrar + 285
YSTF =254 % YSIM (41)
ZsTp Zsim

2.3.4 HRMA Nodal Coordinates (HNC)

We have located the event pixel relative to the SIM structure; we must now locate it relative to
the telescope mirror, the HRMA. In particular, for data analysis we want to know the photon’s
trajectory from the HRMA Node, the apparent position from which the photons emanate. HRMA
Nodal Coordinates (Xy,Yy, Zy) have their origin at the HRMA node and axes parallel to the
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SIM Translation Table

Figure 15: The relationship between STT and STF coordinates. The SIM table has moved so that
HRC is at the focus.

spacecraft axes. Thus, positive X is towards the source. In flight, ideally the difference between
STF and HNC is just an offset by the focal length along the X axis:

Xsrr f Xn
Ysrr |+ 0 | = Yn (42)
ZsTr 0 ZN

but there may be an alignment rotation matrix. (At XRCF there is no telescope structure and the
conversion from STF to HNC coordinates does require a general translation and rotation.) HNC
coordinates will be discussed further below.

In the nominal configuration on orbit, with the SI aimpoint on axis,

X, Xy f
Y =| Yy |+1]0 (43)
Z1 ZN 0

When the roll angle is zero, photons with larger RA land on the detector at lower values of Y7,
while photons from higher Dec than the on-axis value land at negative 7.

In a general flight configuration, what are the HRMA nodal coordinates of a point G' given in
LST coordinates?

e The LSI coordinates give G relative to S, the detector nominal focus position;
e The table below gives S relative to 3, locating the detector on the translation table;

e The current SIM position gives X relative to g, describing the state of the translation table;
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Figure 16: Imaging the sky in LSI coordinates
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e and since we are in flight, 3y coincides with F', the telescope focus, so we can get the nodal
coordinates.

PN(G) - PN(F) + PSTF(E) + PSTT(S) + PL(G) (4:4)
or in detail
XN —f Xsrr
Yn = 0 + | Ysrr
ZN 0 ZsTF
—f Xorr(X) Xsrr
= 0 + | Yorr(X) |+ | Yerr
0 Zsrr(X) ZsTT
—f Xsrr(X) Xsrr(S) X,
= 0 + | Ysrr(Z) |+ | Yorr(S) |+ | Y2 (45)
0 Zsrr(X) Zsrr(S) Zr,

Usually we don’t have to bother with this since the SIM is usually moved to the appropriate
focus position for the instrument, which is defined by

XSTF(E) XSTT(S)
Zsrr(¥) Zsrr(S)

This recovers the nominal configuration.

49



Figure 17: Correcting LSI coordinates for SIM position

2.4 Focal and Tangent plane systems
2.4.1 Focal Plane Pixel Coordinates
We define Focal Plane Pixel Coordinates by

FPX = FPX0-A;'(Yx/Xy) (47)
FPY = FPY0+A;'(Zy/Xy)

where A; is a pixel size in radians per focal plane pixel. These coordinates give the angle at
which the photon emerged from the HRMA mirror. We select a nominal pixel size of 0.1 arcseconds.
Note that these pixels are not the same size as the detector pixels; the size in mm of these pixels

at the physical focus is
Aps = fA (48)

where f is the focal length.
Note that Xy is negative for locations on the detector side of the mirrors, so the FP coordinates
now are parallel to decreasing RA and increasing Dec, as we will want for the sky image.

2.4.2 Tangent Plane Pixel Coordinates (TP-1.0)

The Tangent Plane pixel coordinate system plays the role of the system referred to as Boresighted
Detector Coordinates in previous missions. It is not really detector coordinates, since it is assumed
to lie in the observed tangent plane and so accounts for distorting effects of the mirrors (in the
past, we've assumed the detector produces a perfect tangent plane). This system is used to apply
calibrations which do not depend on a knowledge of the spacecraft aspect solution. In the case of
zero roll angle, TPX is in the direction of decreasing RA and TPY is in the direction of increasing
Dec.
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Tangent plane coordinates are related to Focal Plane Pixel Coordinates by the application of
small corrections to account for mirror effects.

TPX =FPX+ AFPX(FPX,FPY)

TPY =FPY +AFPY(FPX,FPY) (49)

Table 18: TP and Sky pixel image centers

Instrument System  TPXO0, TPYO0 Image size

ACIS TP, Sky 4096.5,4096.5 8192 x 8192
HRC TP, Sky 16384.5, 16384.5 32768 x 32768

For ACIS, we choose sky pixel coordinates of exactly 0.5 arcseconds for convenience. This is a
1.5 percent change in pixel size. For HRC, we choose one-eighth-arcsecond pixels so that the HRC
pixels are exactly a factor of four smaller than the ACIS ones. This is a 5 percent change in the
HRC pixel size compared to detector pixels.

Table 19: Pixel Sizes (assuming flight focal length)

Instrument System  Size at Focal Plane Angular Size

Ay, Ay (mm) A; (arcsec)
ACIS Detector 0.024004 0.492
HRC Detector 0.006430 0.132
ACIS Sky 0.02440 0.500
HRC Sky 0.00610 0.125

2.4.3 Sky Pixel Coordinates (TP-2.0)

The Sky Pixel coordinate system is a translation and rotation of the Tangent Plane pixel coordinate
system to align the image with a nominal pointing direction and spacecraft roll angle. For small
aspect corrections, sky pixel coordinates are

X =X0+ (TPX —TPXO0)cosy — (TPY —TPY0)sin~y + Ay
Y =Y0+ (TPX — TPXO0)siny + (TPY — TPY0)cosy + Ay

where we usually choose X0 =TPX0,Y0=TPYO0. The quantities Ax and Ay are the sky frame
aspect offsets in pixels, determining the sky pixel coordinates of the optical axis. (Note that the
aspect offsets for Einstein and Rosat were stored as detector frame offsets, which required applying
the roll angle to; it’s not clear to me why this choice was made.)

In general when combining data over a wide range of pointing directions, (mosaicing images) we
must reproject to the nominal sky tangent plane.

(50)
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2.4.4 Physical Tangent Plane coordinates (PTP-1.0)

If the Tangent Plane pixel coordinates represent a position on the tangent plane to the unit sphere
at the optical axis, the Physical Tangent Plane coordinate system

Xprp _A,(TPX — TPX0)
Yore | = | ATPY —TPYO) | (51)
Zprp 1

represents the 3D vector from the center of the unit sphere to that position on the tangent plane,
which the convention that the Xprp and Yprp axes run in the direction of increasing RA and Dec
respectively in the on-orbit case with zero roll.

2.4.5 Physical Sky Plane coordinates (PSP-1.0)

The Physical Sky Plane coordinate system for zero aspect offset and finite roll angle is

Xpsp XprCOS’}/—FYprSin’)/
Ypsp | = | Xprpsiny —Yprpcosy (52)
ZPSP ZPTP

where v is the spacecraft roll angle. The full expression is given in the appendix.
The PTP and PSP systems are important as you need them to calculate the RA and Dec.

2.5 Angular coordinate systems

These systems are used as world coordinate systems applied to the tangent plane and sky pixel
systems.

2.5.1 J2000 Celestial Coordinates

One can go from Tangent Plane Physical coordinates to J2000 celestial coordinates using the in-
stantaneous pointing direction (a4,d4). and roll angle 4.

Xprp
S(a,8) = Rot(m/2 + ya, /2 — da,m —aa) | Ypre (53)
Zprp

Use the nominal pointing direction (g, dp) and set the roll angle to zero if using Sky Plane Physical

Coordinates:
Xpsp
S(a,0) =Rot(r/2,7/2 — dg,m —ap) | Ypsp (54)

ZPSP
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From TP pixel coordinates, recall that

Xprp _A,(TPX — TPX0)
Yere | = | A(TPY - TPYO) (55)
Zprp 1

2.5.2 HRMA Left Handed Spherical Coordinates (HSC-1.1)

This system is used to express off-axis angles. We define HRMA Spherical Coordinates (r, 0y, ¢5)
in terms of HRMA nodal Cartesian coordinates as follows:

Xy +rcosfg
Yy | = | —rsinfycosoy (56)
Zn rsinfg sin ¢g
The inverse is
ro= JXZHYRHZR (57)

Og = cos '(Xy/r)
on = arg(—Yn,Zn)

This coordinate system is used for input to the XRCF Test Database; it is a LEFT HANDED
coordinate system. The XRCF test database immediately converts these to pitch and yaw. The
north pole of this system is the center of the forward aperture of the HRMA AO0; 5 measures the
off-axis angle of the incoming ray and ¢g measures its azimuth in the Yy, Zy plane such that for an
observer at XRCF standing by the SI and looking at the XSS, ¢ = 0 is to the left and ¢5 = 7/2
is vertically downwards.

Then the forward aperture of the HRMA, A0, has HRMA nodal coordinates (a,0,0) and HSC
coordinates (a,0,0). The focal point F of the HRMA has HRMA nodal coordinates (—f,0,0) and
HSC coordinates (f,m,0).

Figure 18: HRMA spherical coordinates

53



2.5.3 HRMA Right Handed Spherical Coordinates (HSC-1.2)

To satisfy my desire for using left handed systems as little as possible, I define HSC-1.2 to be the
same as HSC-1.1 except that the azimuth increases in the opposite direction: ¢yr = 0 is to the left
and ¢ = m/2 is vertically upwards.

Xy rcostgp
Yv | = | —rsinfycosdy (58)
Iy —rsinfysin gy
The inverse is
ro= JXZ YR 2R (59)
HHR = COSil(XN/’I“) ZQH

¢ur = arg(—Yn,—2Zn) = —du

2.5.4 HRMA rotation coordinates (Pitch and Yaw) (HSC-3.0)

A third choice of pole is the +Yy axis, whose latitude-like coordinates «, is called yaw, and whose
azimuthal coordinate «, is called pitch. The mapping between pitch and yaw coordinates and
HRMA coordinates is

Xy +7 COS (v, COS Qyy
Yv | =| +rsine, (60)
AN —7 COS (v SIN
or
a, = sin '(Yy/R) (61)

Qy = arg(XN, —ZN)
The rotation matrix from HSC-1.2 right-handed spherical coords is
R(HSC-1.2,HSC-3.0) = Rot(m,7/2, 7). (62)

The motivation for this coordinate system is its relationship to the commanded pitch and yaw
of the HRMA at XRCF. We call the pitch and yaw coordinates of the XSS a,(XSS) = ayo and
a,(XSS) = a,. To put the XSS at these coordinates, the HRMA must be yawed «,q to the left
and its aperture pitched o,y downward.

2.5.5 HRMA Source coordinates (HSC-2.1)

The HRMA Source Coordinate system (r, az, el) is a pseudo RA, Dec system that gives the ‘sky’
position of the source as seen by the HRMA. Unlike HRMA spherical coordinates, they have a
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pole at —Zy rather than Xy. The relationship between Source coordinates and HRMA nodal
coordinates is:

Xy +7r coselcos az
Yy | = | —rcoselsinaz (63)
AN, —rsinel

Coordinates az =0, el = 0 refer to a source on the HRMA axis (center of the field of view);
positive el gives a source above the HRMA axis (top of the field of view), while positive az gives a
source to the left of the center of the field of view. (HSC-2.0 had az going the other way, creating
a left-hand system). The inverse function is

el = sin™'(=Zy/r) (64)
az = arg(Xy, —Yy)

HRMA equator
el=0

HRMA meridian

az=0

Figure 19: HRMA source coordinates

The rotation matrices from the other HRMA angular systems are

R(HSC-1.2,HSC-2.1) = Rot(r/2,7/2,7); R(HSC-3.0,HSC-2.1) = Rot(r/2,7/2,37/2).  (65)

2.6 Grating data

When we observe with the gratings, we get a dispersed spectrum with orders +1, -1, +2, -2, ...
and a zero-order undispersed image. The undispersed (zero-order) photons do not interact with the
gratings and we can deal with them using the same analysis as for imaging detectors. To analyse a
dispersed photon, however, we must know the location of the zero-order image as well as that of the
dispersed photon. For instance, spacecraft roll aspect must be applied to the zero-order position,
not the dispersed position.

The location of the zero order photon must be calculated relative to the Grating Node rather
than the HRMA Node. The Grating Node is on the optical axis at a distance R from the focus,
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where R is the diameter of the Rowland Circle. The nominal Rowland Circle diameter is quoted as
8650.0 mm [1], Appendix A, p. 11; 8633.69 mm [1], Drawing 301331, Sheet 3; and 8636.00 mm [3].
[ will adopt the value from the drawing, i.e. 8633.69mm. (However View F on the same drawing
shows the Rowland circle intercepting the X axis at X4 = 372.116 corresponding to R = 8643.11
mm. This is an error caused by confusing HO and H1 when measuring the location of the OTG
origin.)

2.6.1 Grating Nodal Coordinates (OTG-1.0)
The HNC coordinates of the Grating Node GO in flight are

Xn(GO) —1431.81
Yv(GO) | =1 0 (66)
Zx(GO) 0

The exact value is different at XRCF.
In general, we define Grating Nodal Coordinates GNC as

Xen Xy Xn(GO)
Yon | =] Yv | = Y¥(GO) (67)
ZGN ZN ZN(GO)

These are the same as the project OTG coordinates, except that their origin is at the grating node
and not at the OTG surface:

63.500
(XGNayGN;ZGN) — (XG;YGazG) - 0 (68)
0

2.6.2 Grating Zero Order Coordinates (GZO-1.0)

Next we pick a source, with zero order position ZO. and let the vector from the grating node to
the source zero order be S. Then define

ex,, = —S/|S]
€Yo — dO A eXzo/|d0 A eXzo| (69)
€270 T €Xyo N\ €yyo

where the Grating Pole (cross-dispersion unit vector) dg is
do = (0, —sin ag, cos ag) (70)

in HNC coordinates, where o is the angle between the dispersion direction and the spacecraft Y
axis.
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This defines a cartesian orthonormal set, Grating Zero Order Coordinates, whose origin we
choose to be at GO0. Diffracted photons travel in the X o, Y;0o plane, and the intersection of this
plane with the detector surface defines the dispersion direction. For an on-axis source and a grating
with ag = 0, Zero Order coordinates are the same as Grating Nodal coordinates.

Figure 20: Grating Zero Order coordinates

2.6.3 Grating Diffraction Coordinates (GDC-1.0)

The Grating Diffraction Coordinate system (rr¢, drq) gives the distance in mm along the dispersion
direction and in the cross-dispersion direction. We measure the longitude fr and latitude #p of the
diffracted photon in the ZO system,

rrg = Xrfr = Xg t3“1_1(_ZYZO/XZO) (71)
_ _ Zo ~
dTG = XR tan 0d = XR\/M XR(ZZO/XZO)
Here Xy is the length from the grating node to the focus, which is approximately equal to the
length |S|.

Figure 21: Grating Diffraction coordinates
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2.6.4 Grating Diffraction Plane Pixel Coordinates (GDP-1.0)

The Grating Diffraction Plane Pixel Coordinates GDX, GDY are defined by

GDX =GDX0 — A;SI (Yzo/Xzo)
GDY =GDY0+ A, (Zz0/Xz0)

analogously to the Focal Plane Pixel Coordinates.

They are related to the physical Grating Diffraction Coordinates by

GDX =GDX0 + A;SI tan(rTg/XR)

GDY =GDYO0 + A;SI (dTg/XR) COS(TTg/XR)

(72)

(73)

Now the LETG is normally used with HRC and the HETG with ACIS. Note that the GDC are
centered at the zero order position for the source, which in principle can be a long way off axis. The
coordinate parameters for the gratings are listed below. We use the same physical pixel size as for
the detector systems, which correspond to somewhat different angular sizes than the imaging case

because we are measuring angles from G rather than HO.

Table 20: GDC pixel image centers

Instrument System GDXO0, GDY0 Image size
ACIS GDC 4096.5, 4096.5 8192 x 8192
HRC GDC 32768.5, 32768.5 65536 x 65536

Table 21: GDP Pixel Sizes (assuming flight Rowland ra-

dius)

Instrument System  Size at Focal Plane

Angular Size

Ay, Ayp (mm) Ays (arcsec)
ACIS Detector 0.024004 0.573
HRC Detector 0.006430 0.154
2.6.5 Dispersion relation
The wavelength of the diffracted photon is
A= Psinfr/m

where P is the average grating period and m is the diffraction order. So

A~ (P/m)(GDX — GDX0)A,,

o8
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The average grating periods for the three gratings are given in the table below.

Table 22: Grating properties

Instrument P ag (deg)
HETG 2000.04 5.0
METG 4000.04 -5.0
LETG 9921.04 +0.0

3 XRCF Data Analysis

3.1 XRCF coordinate systems
3.1.1 HRMA coordinates (HRMA-2.0) at XRCF

Since the HRMA is mounted upside down at XRCF, the positive Zy axis is along the local DOWN-
WARD vertical when HRMA is in its default configuration in the XRCF.
In the XRCF default configuration

Xu +Xxror
Yo | =1 —Yxrer (76)
Zg —ZXRCF

3.1.2 XRCEF facility coordinates (XRCF-1.0)

The XRCF Facility coordinate system (Xxgrcr, Yxrer, Zxror) (‘(XRCF coords’) has its origin at
the HRMA CAP midplane X0, which is close to the center point HO ( the point about which the
HRMA is rotated at the XRCF). The X-axis is the Facility Optical Axis, and the Z-axis is the local
vertical. Units of XRCF coordinates shall be mm.

The SI default reference point S is located at the HRMA on-facility-axis focus F0, at XRCF
coords (—f,0,0) where we currently believe f = 10258.3. The value may change.

3.1.3 DFC coordinates (XRCF-2.0)

The Default FAM coordinates (DFC) are the coordinate system (frame F3 in Ball’s notation)
in which the movement of the FAM feet relative to their boresight positions is measured. More
importantly for data analysis, they are the coordinate system in which the FAM data records record
the (X,Y,Z) and (0x, 0y, 07) of the FAM.

The FAM axes in the default, boresight configuration (DFC coordinates) are nominally parallel
to the XRCF axes but there may be some misalignment. We encode this misalignment in the FAM
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Frame Euler Angles ¢pp, Opr, Yrr of the rotation matrix R(XRCF,DFC) whose default values are
Rot(0,0,0) (TBR after installation). Since the DFC coordinates are fixed with respect to the XRCF,
we give them the identifier XRCF-2.0. The origin of DFC coordinates is taken to be F0O, the HRMA
focus in the default configuration.

ZLxrcF
Zprc
HRMA S
SIand SIM—
XxrCF Ko ‘
- ® o
PG “ Fo S
7
.7 L
y 2 ’ YDFC
X Y XRCF

Figure 22: XRCF Coordinates and DFC Coordinates. The DFC coordinates give the misalignment
of the FAM in its default position. The misalignment is highly exaggerated in the diagram.

3.1.4 FAM coordinates (FAM-1.0)

In the default, boresight configuration the FAM axes are intended to be parallel to the XRCF (and
LSI) axes, but there may be some misalignment. The FAM encoders measure the movement of the
FAM relative to its boresight position, not relative to the XRCF. Therefore, we need to describe
the motion of the FAM by defining two new coordinate systems, one fixed in the FAM (FAM
coordinates) and one fixed in the XRCF but with axes aligned with the FAM default position (DFC
coordinates). At the boresight position, DFC and FAM (Ball frame F5) coordinates are coincident.

Specifically, we define FAM coordinates (Xp, Yr, Zr) to be fixed in the FAM, with the X axis
normal to the payload interface plane and the Y, Z axes in that plane and specified by the alignment
cubes on the FAM. The center of the FAM aperture is at FAM coordinates (¢, 0.0,0.0) where
cy = 77.47 if the units of the system are chosen to be mm. DFC coordinates are then defined to
coincide with FAM coordinates when the FAM readouts are all zero. (Note: In the Ball SER memo,
DFC is frame F3, FAM is fram F5, and LSI is frame F7).

3.1.5 XRCF SI Installation Coordinates (STF-2.0)

SI Installation Coordinates (SIC) are an intermediate system used in correcting for dither. They
describe the orientation of the STF (LASSZ) frame with respect to the XRCF when the FAM is at
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its home position, but are considered to be fixed with respect to the FAM/LASSZ. They share the
same origin as STF coordinates:

P(SIC) = R(STF, SIC)P(STF) = Rot(3n/2, 7 + 1y, 7/2) (77)

and the rotation matrix is the product of the instrument roll misalignment Rot(37/2,,,7/2) and
the fact that the STF is upside down with respect to the XRCF, Rot(37 /2,7, 7/2).

3.2 XRCF coordinate transformations
3.2.1 Specifying the HRMA orientation in the XRCF

In the default configuration CO, HRMA coordinates are identical to XRCF coordinates. However,
the HRMA can change its pitch and yaw. T adopt the Ball notation, in which the HRMA Yaw
(Azimuth) «, is positive if the aperture of the HRMA is moved to the left of the FOA (as seen by
someone standing at the SIs, i.e. the XRCF Yy pcp-coordinate of A0 is positive), and the HRMA
Pitch (Elevation) «, is positive if the aperture of the HRMA is moved downward (so that the
elevation of the XSS relative to the HRMA centerline increases, and the XRCF Zxrcor-coordinate
of A0 is negative).

The XRCF test database stores the HRMA pitch and yaw, but is created using inputs of the
HRMA polar angle and polar azimuth (¢,, (,). These are the HRMA spherical coordinates of the
XSS.

The polar angle is the angle between Xy and Xxgrcr, while the polar azimuth is the angle
between Yy and —Yxgreop in the Yyrer, Zxrer plane. These angles are directly related to the
HRMA spherical coordinates of the XSS. If the XSS is at HSC (r,8,¢) then the HRMA polar
angles are ¢, = 0, (, = ¢. The test database angles and the mechanically commanded angles are
related by

cosa, cosa, = cos(, (78)
sina, = —sin(,cos(,
cosa,sinq, = —sin(,sin(,

So for example, if the test database commands an off axis angle of (,=0.5 arcmins and a polar
azimuth of (,=90 degrees, the required pitch and yaw are o, =-0.5 arcmins, a,=0, and the nose of
the HRMA is raised by 0.5 arcmin. If the polar azimuth is instead 45 degrees, we have a,=-0.35
arcmins, «,=-0.35 arcmins, and the HRMA is raised by 0.35 arcmins and yawed by 0.35 arcmins to
the right; conversely, the image of the XSS in the HRMA focal plane moves down and to the left.
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3.2.2 XRCF to HNC transformation

In terms of the pitch and yaw, the transformation between XRCF and HNC coordinates is given
by the translation vector HO(N) = (Xy(H1),0,0) and the Euler rotation matrix

or explicitly

Xy
YN -
ZN -

and the inverse

R(X,N) = Rot(a,, ™+ a, )

(Xxrer — Xxror(HO)) cos o, cos oy + Yy per sin a, cos oy — Zx pep Sin o

_(XXRC’F - XXRC’F(HO)) COS Oy sin Oy — YXRC’F sin Qy sin Oy — ZXRC’F COS vy

Xxror — Xxror(HO)) sina, — Yxger cos o,

Xxrer = Xxrer(HO0) + Xy cosa,cosa, + Yysina, — Zy cos a, sin ay
Yxrer = Xpysino,cosay, — Yycosa, — Zysina, sinay
ZXRC’F = —XN SIn gy — ZN COS vy

Note that for zero pitch and yaw,

Xy = (Xxrer — Xxrer(HO))
Y = —Yxrer

ZN — _ZXRCF

reflecting the fact that the mirror is installed upside down at the XRCF.
So in particular if the focal point Py (F') = (—f,0,0) then

Pxrer(F) = (Xxrer(HO) — f cosa, cos oy, — f sin o, cos o, f sinay)

For some reason the Ball SER approximates this as

Px(F) ~ (—f cos \ﬂag +02),—fsina,, fsin o)

which is OK for small a,c,.
The XSS is at HRMA nodal coordinates

Xn(XSS) +LS cos o, cos oy,
Yn(XSS) | =| +LSsina,
Zn(XSS) —LS cos a, sin ay))
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3.2.3 DFP coordinates (FP-2.0)

At the XRCF:

Xsrr Xsrr(X) Xy—f

Yore | = | Yerr(S) | + RN, STF) | Y (86)
ZsTr Zsrr(X) ZN

where R(N, STF) is a rotation matrix which depends on the orientation of the FAM. In the nominal
(aligned) configuration Psrpr(X) = 0 and R(N,STF) =1 so that

Xsrr Xy —f
Yorr | = | Yn (87)
ZsTF ZN

We define Dithered Focal Plane pixel coordinates by

DFPX = FPX0—A,Ysrr/(Xsrr+ f) (88)
DFPY = FPY0+ A,(Zsrr/Xsrr + f)

so that in flight, or at XRCF with no dither or offset, DFP and FP coordinates are identical. At
XRCF, they differ due to dither. This allows us to inspect the effects of dither independently of
any other effects.

3.3 XRCF forward coordinate thread

The XRCF forward coordinate thread illustrates the prediction of the detector position of the center
of the X-ray beam for a particular XRCF observation.

e Step 1: Obtain the HRMA spherical coordinates of the XSS. The test database parameters
HRMA polar angle hrma_pol and HRMA azimuth hrma_az are exactly the HRMA spherical
coordinates hrma_pol = 0 (X SS), hrma_az = ¢z (X SS) of the X-ray source.

e Step 2: Convert these to the commanded pitch and yaw of the XSS.

a,(XSS) = sin'(—sin(0(XSS9))cos(dr(XSS))) (89)
o, (XSS) = sin ' (—sin(@x(XS9))sin(¢pr(XSS))sec(a,(XSS)))

e Step 3: Convert the incoming photon az and el or pitch and yaw to Tangent Plane pixel
coordinates.

e Step 4: Correct the Tangent Plane coordinates to Focal Plane coordinates.

e Step 5: Convert Focal Plane coordinates to a HRMA Nodal Coordinate vector.
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e Step 6: Convert the nodal coordinates of the HRMA node and of the ray direction to LSI
coordinates for the current detector. This involves computing the LSI to HNC transformation,
which depends on the current FAM and LASSZ positions.

e Step 6: Calculate the intersection of the ray with each of the detector chip planes, giving a
chip ID and the CPC coordinates of the intersection.

e Step 7: Convert the CPC coordinates to chip and detector coordinates.

3.4 XRCF backward coordinate thread

The calculation going from CHIP to TDET and/or STF coordinates is unchanged; we treat the
LASSZ device as if it were identical to the SIM, although it is possible that slightly different STT
coordinates for the detectors will be needed. Similarly, the process of going from HNC coordinates
to FP pixels to TP pixels is unchanged, although because of the 1G effects it is possible that the
AFPX,AFPY functions may be slightly different. However, going from STF to HNC coordinates
is more complicated.

First, T describe the full STF to HNC transformation; in a later rev I will describe the same
transformation in terms of an offset from a nominal value.

3.4.1 STF to FAM coordinates
The STF (LASSZ) and FAM frames share the same origin but the axes are misaligned:

P(FAM) = R(STF,FAM)P(STF) = R(XRCF,DFC)R(STF,SIC)P(STF) (90)
The rotation matrix is the product of the DFC to XRCF misalignment matrix and the SI installation
matrix, since when the FAM is in the home position the SIC and XRCF axes should line up.

3.4.2 FAM to DFC coordinates

The FAM feet are moved so that the FAM/STF origin ¥ is displaced and the orientation of the
FAM is changed:
P(DFC)=X(DFC)+ R(FAM,DFC)P(FAM) (91)

where

R(FAM, DFC) = Rot(3r/2,0x,7/2) Rot(y, 0,0) (92)

and

Z
Here the values of (X,Y,Z) and (fx, fy,07) are obtained from the FAM data records.

X
S(DFC) = ( Y ) . (93)
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3.4.3 DFC to XRCF coordinates

Now we reapply the misalignment matrix to get the position of the pixel in XRCF coordinates:
P(XRCF)=%y(XRCF)+ R(DFC,XRCF)P(DFC(C) (94)
3.4.4 XRCF to HRMA nodal coordinates
To go to HNC coordinates, we apply the HRMA pitch and yaw:
P(HNC)= R(XRCF,HNC)(P(XRCF)— N(XRCF)) (95)
Thus the complete STF to HNC transformation is
P(HNC)=%(HNC)+ R(STF,HNC)P(STF) (96)
where
Y (HNC)=R(XRCF,HNC)(2o(XRCF)—- N(XRCF)+ R(DFC,XRCF)S(DFC)) (97)
and

R(STF,HNC) = R(XRCF, HNC)R(DFC, X RCF)R(FAM, DFC)R(X RCF, DFC)R(STF, SIC).
(98)

3.4.5 Case of on-axis source and no dither

In the case where there is no dither offset and no HRMA tilt, ¥(DFC) = 0 and R(FAM,DFC)=1,
while R(XRCF,HNC)=Rot(37/2, 7, 7/2). Then

R(XRCF,STF) = Rot(37/2,v¢, +7,7/2) (99)
and
Xsrr Xxpror + f
Ysrr | = | —Yxrercosy, — Zxrer sini, (100)
Zsrr Yxrersiny, — Zxrer cos iy,
and
Xsrr Xnv+f
YSTF = YN COS¢7- + ZN sinz/)r (101)
ZSTF _YN sinwr + ZN COS wr
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3.4.6 Case of tilted HRMA with no dither

In the nominal configuration CN, the SIM is moved so that the Xg7p axis is coincident with the
HRMA axis Xy. Then R(HNC,STF) = Rot(37/2, ., 7/2), so

Xsrr f Xn
YSTF = 0 + YN COS wr + ZN sin 'lbr (102)
ZsTr 0 =Yy sin, + Zn cos i,
and,
Xsrr f COS (v, COS (yy
Yorr = 0 | +Xxrer | —sing, cosa,sin oy + cos i, sin a, (103)
ZsTF 0 — sin ¢, sin o, — €os 1), COS @, sin q,
Sin v, COS Oy
+Yxreor | —cost, cosa, — sin, sina, sin oy,
— €08 1, sin a, sin oy, + sin ¥, cos oy,
— sin q,
+ZXRC’F —sin ¢T COS vy

— COS Yy COS

The inverse transformations are:

Xxror COS (v, COS Oy
YXRC’F = (XSTF — f) — SIN (¢, COS Oy (104)
ZXRCF SIn &y,

sin 1, cos o, sin oy, — cos P, sin a,
+Ysrp | — cos, cosa, — sin 1, sin o, sin

— COS vy Sin 1,

COS 1)y COS v, Sin vy, + sin ¢, sin v,

+Zsrr | — cosi, sina, sin ay, + sin v, cos a,
— COS (ty COS Yy

and
XN = XSTF - f (105)
Yn = Ysrpcost, — Zsppsini,
ZN = Zsrrcost, + Ysrpsiny,

The rotation of the SI about the Zxrcr axis is ¥1, = a,, about the Yxgcor axis is 1, = a,
and about the Xygeop axis is ¢1, = 1), (Ball SER). We now reproduce the transformation matrix
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in the SER eq.5a,
1 +yl, -1,
(wlzwlz + wly) +(wlzw1y - zplx) +1
which follows easily from setting cos X = 1,sin X = X in R(XRCF,STF).

3.4.7 STF to HRMA coordinates: case with dither or offset

We expect that the SI will always be close to the nominal configuration CN, but with small offsets.
Suppose that due to FAM movement the ST origin is offset from the nominal position by (possibly
large due to defocus or off axis tests) AS = (AS1,AS2,AS3) and the FAM pitch and yaw are
offset by a small Aay, Aa,. (we assume the roll offset Ay = 0). We will keep only first order in
the pitch and yaw offsets. Then

Xy —f XsTF
YN = 0 +(I+ ARZAOZZ + ARyAO[y) YSTF COS % — ZSTF sin wr +RXNAS (107)
ZN 0 YSTF sin@br + ZSTF COS@bT
where I is the unit matrix and the adjustment matrices AR, and AR, are
—sino, cosa, —CoSa, —Sina,sino,
AR, =| —sina,sinq, —sina, cosa,sing, (108)
0 0 0
and
—cosa,sina, 0 cosa, cosay
AR, = | cosacosa, 0 cosaysina, (109)
— COS (yy 0 sina,

Unfortunately we have the angle offsets in DFC coordinates, not HNC coordinates; I have not
yet calculated the correction but it will be small. Having obtained the coefficients of the STF to
HRMA transformation, we can trivially convert to the coefficients of the DETX, DETY to X, Y
transformation, which are more complicated than the usual aspect offset formalism. The aspect
offset formalism ignores changes in the focus both with time and spatially across the detector plane,
so the full three dimensional STF to HRMA transformation is needed if you want to study such
effects.

4 Listing of Other AXAF Coordinate Systems

4.1 Project Coordinate Systems

There are a plethora of existing coordinate systems in use describing positions relative to the HRMA
mirror. They are used in the assembly and alignment of the hardware but they will not be used in
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the kind of data analysis I am concentrating on in this memo. They are presented for reference.

4.1.1 Orbiter coordinate system

The Space Shuttle Orbiter coordinate system [1] is used to locate the spacecraft within the Orbiter
payload bay during the launch phase. It is measured in inches with the +X axis downwards at
launch (i.e. toward orbiter aft end), the +Y, axis to starboard, and the +7, axis toward the top
side (tail side) of the orbiter (i.e. upwards at landing). During launch, the origin of spacecraft
coordinates is at orbiter coordinates

Xo 596.0
Yo | =1 00 (110)
Zo 400.0

The relation between Orbiter and Spacecraft coordinates is

X, Xo — 596.0
Yi | =] Yo (111)
Z Zo — 400.0

4.1.2 Payload coordinate system

The Space Shuttle payload coordinate system [1] is fixed with respect to the payload, probably. It
is measured in inches. In the stowed position, payload and Orbiter coordinates are parallel, and
related by

Xp Xo — 596.0 X4
Y | =1 Yo = va (112)
Zp Zo — 200.0 Z 4 + 200.0

(reference [1].)

4.1.3 The Telescope Ensemble Coordinate System

The document EQ7-002 Rev D, [4] describing the HRMA, defines the Telescope Ensemble Coor-
dinate System (X, Y7, Z7) with somewhat different axis choice (+Z is the optical axis) and with
origin at the focus. Presumably this is the on-orbit, zero-g focus {0, but the document doesn’t say.
The document IF1-20 OBS/SI ICD [1] defines the Telescope Coordinate System (X, Y7, Zr) to be
identical with spacecraft coordinates.
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4.1.4 Optical Bench Assembly system
The OBA system [2] is

XoBa Xpp —28.5 X4 —60.336
Yopa | =| Yrp =1 Ya (113)
ZoBA Zrp Za

(TRW AXAF I system alignment plan). T won’t discuss it further.

4.1.5 OTG Coordinates (OTG-2.0)

The OTG coordinates system (Xg, Yg, Zg) has X¢ parallel to Xy and Yg, Zg parallel to Y4, Za
X = 0 is the side of the OTG closest to the focal plane. This system (AXAF-OTG-2.0) is offset
by 2.50 in (63.5mm) relative to the Grating Nodal system (AXAF-OTG-1.0) of interest for data
analysis.

The HETG dispersion direction is rotated 5 deg counterclockwise from Y, viewed from X4 = 0.
METG is rotated the same amount clockwise. The inner and outer radii of the OTG are 234.95
and 558.80 mm.

4.1.6 Project FPSI Coordinate System

The Focal Plane Science Instruments coordinate system (Xp, Yr, Zr) is essentially identical to the
LSI system defined in this document. However, the SE30 [2] definition specifies the origin as the
‘desired aim point’, while my LSI definition specifically selects a single nominal aim point for each
instrument.

4.1.7 SIM and ISIM coordinates

ISIM coordinates are defined in the OBS/SI ICD [1] with their origin at spacecraft coordinates
(31.836, 0.0, 0.0) near the focus (and thus defined only while the spacecraft is assembled); SIM
coordinates are defined in the System Alignment Plan D17388, with their origin at the SIM/OBA
interface. Both are usually measured in inches. I recommend use of the more generally defined data
analysis coordinate systems FP (fixed wrt the HRMA) and STF (fixed wrt the SIM) defined below.
SIM and OBA coordinates are identical after assembly.

31.836
(Xrsia, Yisines Zisiv) = (Xa,Ya, Za) — | 0O
0

and

60.336
(Xsrars Ysiar, Zsir) = (Xa,Ya, Z4) — | O .
0

69



4.1.8 SAOSAC coordinates (HRMA-3.0)

The SAOSAC coordinate system (Xosac, Yosac, Zosac) is slightly different again. In the SAOSAC
system, at XRCF, the Z-axis increases towards the SI along the FOA, while the X and Y axes are
in the aperture plane with the +Y axis vertical. The origin of SAOSAC coordinates is at A1, which
has nodal X-coordinate X y(Al) = 872.692.

Xosac Yn
YOSAC = _ZN (]_]_4)
ZosAc Xn(Al) = Xy

4.1.9 Summary of useful HRMA Cartesian systems

Xy Xy — Xy(HO) Xn(Al) = Zosac
Yy = | Yy = | +Xosac (115)
ZN Zn —Yosac
(SCX — SCX(HO)) * 25.4
=1 SCY %254
SCZ %254

5 Aspect Camera coordinates

(This section is here as a placeholder for now.)

The Aspect Camera pixel coordinates (z,, y,,) run from 0 to 1023 along each axis of the
camera. From this array are extracted a set of 4x4 subarrays whose coordinate system, Aspect
subarray coordinates, consists of a triplet (ngq, Tsq4, Ysa) giving the subarray number and the pixel
value (running from 1 to 4 in each axis). Usually, however, we may use the full pixel coordinates
when processing the subarrays.

The Aspect Camera CCD is distorted and we will provide a transformation to go from pixel
coordinates to Aspect Camera Tangent Plane coordinates which represent angles on the
sky relative to the camera boresight. Aspect processing will yield an aspect solution which is the
transformation of these tangent plane coordinates to Aspect Camera Sky pixel coordinates
and J2000.0 Sky Coordinates. This solution will then be transferred to the HRMA.

5.1 Fiducial Lights

There are 14 fiducial lights, whose properties are tabulated below. Each fid light is characterized
by the angle between the beam centerline and the normal to the STT mounting surface, 6y, the
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clocking angle in the Y,Z plane (with zero along +Y), f.ck, and the half cone angle of the light
beam, 6,..,. The LSI coordinates of the unit vector along the center of the light beam are

cos Oy
Nrsr = COS Hclock: sin Htilt . (1 16)

Sin Ociock SiN Opiry

We also need to know the location of the light in the LSI Y,Z plane. Drawing 301438 [1] shows
the positions of the HRC fid lights. For ACIS, it shows the positions of a point A on the fid light
which is offset dA = 9.017mm from the fid light center; I have corrected the positions to the fid

light center by
X1 (Fid) X (Datum A) 0
Y1 (Fid) = | Yz(Datum A) | +dA | —sinfqock (117)
71, (Fid) Zr(Datum A) c0S Oiock
The tilt, beam width and clocking angles for each light are:

Table 23: Fiducial Light Angles

Name Htilt Hzero eclock
(deg) (deg)  (deg)
ACIS-1  0.45  1.3500 304.37
ACIS-2  0.45 1.3500 237.82
ACIS-3  0.45 1.3500 270.00
ACIS-4  0.60 1.3500 16.12
ACIS-5  0.55  1.3500 161.74
ACIS-6  0.40 1.3500 74.12
HRC-I-1  0.45 1.5833 239.0
HRC-I-2  0.45 1.5833 301.0
HRC-I-3  0.45 1.5833 142.0
HRC-I-4 0.45 1.5833 38.0
HRC-S-1 0.40  1.3833 203.19
HRC-S-2 0.40 1.3833 336.81
HRC-S-3 0.40  1.3833 156.81
HRC-S-4 0.40  1.3833 23.19

The fid light positions and directions in the LSI frames are

Table 24: Fiducial Light Vectors

Name (XLSI: Yisr, ZLSI) Nnpsr
ACIS-1 (25.40, -43.24, 39.78) (0.99997, +0.00443, —0.00648)
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HRC-5-4

ACIS-2  (25.40,39.78, 39.78)  (0.99997, —0.00418, —0.00665)
ACIS-3  (25.40, 0.00, 46.13) (0.99997, +0.00000, —0.00785)
ACTS-4  (25.40, -102.99, -53.21)  (0.99995, +0.01006, +0.00291)
ACIS-5  (25.40, 90.88, -53.43)  (0.99995, —0.00912, +0.00301)
ACIS-6  (25.40,-17.42, -84.78)  (0.99998, +-0.00191, +0.00671)
HRC-I-1  (35.56, 78.49, 130.63)  (0.99997, —0.00405, —0.00673)
HRC-I-2  (35.56, -78.49, 130.63)  (0.99997, +-0.00405, —0.00673)
HRC-I-3  (35.56, 120.09, -93.83)  (0.99997, —0.00619, +0.00484)
HRC-I-4  (35.56,-120.09, -93.83)  (0.99997, +-0.00619, +0.00484)
HRC-S-1  (35.56, 58.37, 25.00)  (0.99998, —0.00642, —0.00275)
HRC-S-2  (35.56, -58.37, 25.00)  (0.99998, +-0.00642, —0.00275)
HRC-S-3  (35.56, 58.37, -25.00)  (0.99998, —0.00642, +0.00275)

( ( )

35.56, -58.37, -25.00) 0.99998, +0.00642, +0.00275

For ACIS, the ACIS-T LSI frame is used rather than the ACIS-S frame.
For the record, the datum A positions of the ACIS fid lights are:

Table 25: ACIS fid light datums

Light Y,Z

ACIS-1  —50.68, +34.69
ACIS-2  +32.15, +44.58
ACTS-3  —9.02, +46.13
ACIS-4  —100.49, —61.87
ACIS-5 +93.71, —44.87
ACIS-6 —8.75, —87.25
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A Appendix 1: Spherical Coordinate Rotation

A.1 Single axis rotations

Consider unit vectors ex, ey, ez along the axes of a right handed Cartesian system X,Y,Z. Let
the operator for a simple anticlockwise rotation of X,Y,Z to X', Y’, Z’ about a general vector a by
angle « be Rot;(a, «), so

X' X
Y | =Roty(a,a) | YV |. (118)
7z Z

Further adopt the convention that in a context where a vector is expected, we may simply write X
for ex, etc. so that Roti(—X, @) is a rotation around the -X axis. Then

1 0 0

Rot; (X, ) = 0 cosa sina (119)
0 —sina cos«
cosae (0 —sina

Rot1(Y,a) = 0 1 0 (120)

sinaw 0 cosa

cosa  sina 0
Roty(Z,a) = —sina cosa 0 (121)
0 0 1

A.2 Euler rotations

We define an Euler rotation Rot(¢g, 0g, 1) of a Cartesian system X,Y,Z to be the product of three
rotations

ROt(¢E, GE, wE) = ROtl(Z, wE)R,Otl (Yv, GE)R,Otl(Z, ¢E) (122)

where the rotations apply to the successively rotated axes from right to left in the usual sense of
matrix multiplication, giving

cos g cosOp cosyp —sinppsinyg sin ¢ cos O cos g + cos g sin g —sinfg cosy g
ROt(d)E,HE,’Q/)E) = —cos¢pgcosOpsinyp —singpg cosygp —singg cosfg sinyg + cos g cos g sinfg siny g
cos ¢ sinfg sin ¢ sin O cosOg
(123)
Note the special cases 0 = 0 and 0 = 7 which give
cos(¢pp +¢p)  sin(op +¢r) 0
Rot(¢g,0,¢p) = | —sin(¢p +Yr) cos(¢p+vE) 0 (124)
0 0 1
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and

(125)

—cos(¢r — Ygr) —sin(¢p —Yg) 0
0 0 -1

Rot(¢g, 7, vE) = ( —sin(¢p — ¢Yg) cos(¢rp —¢YE) 0

A.3 Rotations of spherical coordinate systems

Consider a spherical coordinate system (r,#, ¢) which is rotated to a new system (r,6',¢'). If we
write that an Euler rotation Rot(¢g, g, ¢¥r) is applied, we mean that the Euler rotation defined
in the foregoing sections is applied, with the usual spherical to cartesian mapping understood that
¢ = 0 is along the +X axis and # = 0 is along the +Z axis. So,

rS(0",¢") = Rot(¢p, Op, vi)rS(6, ¢)

We now derive the equations for ¢, ¢’ in terms of 6, ¢ and the Euler angles. I'll lay this out in
gory detail so that noone else has to do it again.
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Gl

We compare the Cartesian components explicitly:

cos ¢ sin & cos ¢ sin f
sin ¢’ sin €' = Rot(¢p,0r,VE) | singsind (126)
cos & cos
cos pp cosfp costyp —sin ppsin g sin g cosfg cosPg + cos ppsing —sinfgcosyg COSd)Slng
= —cosppcosfpsinyp —singg cosyyp —singgcoslgsinyg + cos g cosy g sinfg siny g Sinqﬁsing
cos g sinfp singg sinfp cosfOg cos 0

cos ¢ cos g cos g cos psinlf — sin pg sin g cos ¢psin @ + sin g cos g cos g sin ¢psin O
+ cos ¢ sin Y g sin ¢ sin § — sin O cos e cos 6

—cos ¢ cos O sin g cos ¢psin  — sin ¢ cos P g cos ¢psin @ — sin g cos O g sin Y g sin ¢ sin O
4+ cos ¢pg cos g sinpsinf + sinfg sin g cos 0

cos ¢ sin O cos ¢psinf + sin ¢ g sin O sin ¢ sin 0
+cosfg cosf

cosfg cos Y sin O cos(p — ¢g) + sing sinfsin(¢p — ¢pg) — sinfg cos g cos
— —cosfgsinyg sinfcos(¢p — ¢g) + cos g sinfsin(¢p — ¢pg) + sinfg sin g cos
cos g cos O + sin 0 sin 0 cos(¢p — dg)

Now we multiply each side by Rot; (Z, —¢g) giving

cos O cos? g sinfcos(¢p — ¢pg) +sing cos g sinfsin(¢p — ¢pr) — sin g cos® Y g cos f
+cos O sin? g sinfcos(¢ — dpg) — cosypsing sin Osin(¢p — ¢pr) — sinfp sin? Yz cos f

cos ¢’ sin @' siny g + sin ¢’ sin @’ cos Y
cos 6’

= cos O sinthg cos g sin @ cos(¢p — ¢pp) + sin2 Y g sin @sin(é — ¢pg) — sinfg siny g cos Y cos O
—cosfp cos Py sintg sinf cos(¢p — ¢r) + cos? Y sinfsin(p — ¢g) + sin O cos g sin g cos d

( cos @' sin @ cospp — sing’ sin @’ sinyg )

cos @ cos @ + sin O sin O cos(¢ — dr)

(127)
or, collecting up terms,
sin @' cos(¢' + Vg) cos O sinf cos(¢ — ¢g) — sinfg cos 0
sin@'sin(¢’ + ¢vg) | = sinfsin(¢ — o) (128)
cos 0’ cos O cos§ + sin O sin 6 cos(p — dg)
giving the results
0" = cos ! (cosBpcosh + sinfgsinfcos(¢p — dr)) (129)
¢ = arg(cosfgsinfcos(¢p — dgr) — sinfg cosh, sinfsin(¢p — ¢r)) — Vg




An alternative way to construct the rotation matrix is by constructing the unit axis triad of the
new system. We describe the transformation by providing the coordinates (6, ¢g) of the new pole
in the old system, and the ‘roll angle’ v of the new X-axis relative to the old one. The old axes are

Ex = (1,0,0),6y:(0,1,0),622 (0,0,1) (130)
Then
GIZ = 8(00, ¢0) (131)
and
ep =ez Ney (132)

giving a vector in the old and new equatorial planes pointing ’east’. Then

en = €}, A eg. (133)
Now we roll the tangent plane,
e’y = cosvep —sinyey (134)
and
ey = sinyeg + cosyey. (135)

The components of the three new axis vectors in the old system make up the elements of the rotation
matrix,

Rot(m/2 +7,00,m — ¢o) = (€ €y e} ). (136)
The Euler angles can be found from the axis vectors as follows:

O =cos'ey.ey

¢p = arg(€y.ez/sinfp, €y.ez/sinfg) I (137)

Y = arg(—ey.ex/sinfg, e, .ey/sinbg)

A.4 Euler rotation angles for axis relabelling

Here T tabulate the Euler angles which describe the simple cases of relabelling of the X, Y, Z axes
such as (X', Y', Z") = (Y, —Z,—X). We have

X' X

Y'" | =Rot(¢p,0p,¢p) | YV

A Z
and the inverse

X X'

Y| = Rot(¢y, 0, V) | V'

Z A
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Table 26: Euler angles for axis relabelling

(Xla Ylv Z,) ¢E O ¢E ¢IE QIE le
TX,+YV,+Z |0 0 0 |0 0 0
+X,-Y,—-Z | 0 180 0 0 180 0
+Y,-X,+Z |90 0 0 270 0 0
+Y,+X, -7 |90 180 0 180 180 90
~X,-Y,+Z |180 0 0 |18 0 0
-X,+Y,—Z | 180 180 O 180 180 0
=Y, +X,+2 | 270 0 0 90 O 0
-Y,-X,—-Z | 270 180 O 270 180 O

~Z,4Y,+X |0 90 0 |180 90 180
4Y,+Z,+X |0 90 90 |90 90 180
+Z,-Y,+X |0 90 1800 90 180
~Y,—Z,+X |0 90 270|270 90 180

~Z,-X,+Y |90 90 0 |180 90 90
~X,4+Z,4Y |90 90 90 |90 90 90
+Z,4+X,4Y |90 90 1800 90 90
+X,—-Z,4Y |90 90 270|270 90 90
~Z,-Y,—X | 180 90 0 |180 90 0
~Y,+Z,—X | 180 90 90 |90 90 0
+Z,4Y,—-X | 180 90 1800 90 0
+Y,~Z,—X | 180 90 270 | 270 90 0
~Z,+X,~Y | 270 90 0 | 180 90 270
+X,+Z,—-Y | 270 90 90 |90 90 270
+Z,-X,-Y | 270 90 180 |0 90 270
~X,—Z,~Y | 270 90 270|270 90 270

A.5 WCS Convention

When we deal with celestial coordinates we usually use a latitude-longitude system. In the WCS
paper, Griesen and Calabretta describe a rotation to celestial coordinates («,d) from a native
longitude and latitude (¢, 6,) (Where the subscripts are added by me to distinguish them from the
variables already introduced).

In terms of the standard spherical polar variables used above,

¢w:¢7 0111277'/2_0
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and
a=¢,0=n/2—-10".
They also use the new coordinates of the north pole of the old system (ap,dp) and the longitude

in the old system ¢p of the new system’s north pole to describe the parameters of the rotation. In
terms of our Euler angles,

ap = T—1g
op = ¢p

Their standard rotation is then
rS(r/2 — 60, a) = Rot(pp, /2 — dp, m — ap)rS(n/2 — 04, du)

in our notation.
Equation 129 becomes

§ = sin™" (sin 0, sin 0p + cos Oy, cos §p cos(dy — dp)) (139)
and
a = arg (sin dp cos O, cos(, — dp) — cos dp sin by, cos O, sin(¢, — ¢p)) — T + ap. (140)

Note that in terms of the roll angle,
op =T+ (141)
SO
rS(r/2 —6,a) = Rot(m + v, 7/2 = dp,m — ap)rS(m/2 — Oy, du)

Now let’s consider the conversion from tangent plane to sky pixel coordinates. At a given time
we have an instantaneous aspect solution («4,d4,7v4) in which the transformation to RA and Dec
is given by

Xprp
rS(r/2 — 6, a) = Rot(m + ya,7/2 — 04, m — aa) | Yprp
Zprp
We wish to transform this to PSP coordinates in which the center of the field is at the nominal
location ap,dp. To go from PSP coordinates to RA and Dec one has simply

Xpsp
rS(r/2 —6,a) = Rot(m,w/2 — dp,m —ap) | Ypsp
Zpsp
Hence
Xpsp Xprp
Ypsp | = Rot(r — ap,7/2 — dp, m)Rot(m + ya,7/2 — 04, m —a) | Ypre
Zpsp Zprp
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A.6 Jonathan’s Angular Convention

To describe angular coordinate systems fully and concisely, T introduce a new convention which
summarizes the different ways Cartesian coordinates map to an angle. This convention is applied
both to the polar and azimuthal angles (€', ¢') of a 3D system and uses as reference the ‘standard’
spherical polar convention that the azimuthal angle ¢ is arg(X,Y"), i.e. increasing from 0 to 360
counterclockwise in the X Y plane starting from the X axis, and that the polar angle 6 is arg(Z, XY'),
i.e. increasing from 0 to 180 (or in some applications 360) from the Z-axis north pole towards the
equator. In contrast, in everyday life we often use the latitude/longitude system in which the
azimuthal angle is measured from —180 to +180 and the polar angle runs from +90 at the north
pole to —90 at the south pole. There are a number of other cases which are useful - for instance
the ‘clock face’ convention where the angle is measured from the +Y axis (noon) through the +X
axis (3 o’clock).

We can compactly describe all of these with three digits r = 0,1,2,3 (rotated), e = 0,1 (east-
west), and ¢ = 0, 1 (clockwise) follows:

0" = Ayec(0) = Ageo ((—1)° (0 — rm/2)) (142)
where
0+ 2m (=21 <0 < —m)
Auo(0) = 5 I (T 0D (143)
6 — 2me (mr <0 <2m)

where 6 is the standard convention angle in radians and €' is the transformed angle in radians. The
offset by r rotates the origin by 90 degrees, the ¢ factor reverses the handedness of the coordinates,
and the e factor as implemented by the Ag.o function forces the angle to lie between -180 and 180
if e =1 or between 0 and 360 if e = 0.

The inverse is

=A%

ou(0) =mod(rm/2 + (—1)°0", 27) (144)

[ also specify that saying that p, A is a spherical system using convention (rjejcy, ra€2¢9) means
a spherical polar coordinate system with the polar angle described using convention rie;c; and the
azimuthal angle using convention rsescy (in other words, I stipulate that you always put the polar

angle first). Thus
1= Arere (0)7 A= Areses (¢) (145)

Further T define the following standard names for the different possible choices, and note the
inverse functions:

Table 27: Angular convention summary
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r,e,c Name (cos @, sin h)

000  Standard (cos @', sinf')
001  Lefthand (cos @', —sinf')
010  East-West (cos @', sinf')
011  West-East (cos @', —sin ")
100  Rotated (—sin @', cos ')
101 Clock (sin@',cosf')
110  Rotated E-W  (—sin#', cos#’)
111 Latitude (sin@',cos@')

For example, suppose we say that (X,Y,Z) is a Cartesian system, and (r, 6, ¢) is its standard
native spherical system (000, 000). Then define a new system (r, 1, A) to be a Latitude, East-West
system or (111, 010). This tells us that (in degrees):

B B C(90—0 (0<6<270)
A = Aga(d) [ (0 < ¢ < 180)
010 ¢ — 360 (180 < ¢ < 360)
SO
A=arg(X,Y);u=sin""(Z/r) (147)
where arg; is defined to run from —7 to 4+, and
X r cos ¢ sin 0 rcos Agro () sin AT (1)
Y | = rsingsinf | =| rsin Ayp(A)sin A (p) (148)
7 r cos rcos Ay (1)

Having such a convention is particularly useful in a generic coordinate conversion program; it
lets us tell software in a generic way what the relationship between a spherical and a cartesian
system is.

For the spherical systems defined in this document, the conventions are:

Table 28: Angular meta-convention for AXAF spherical

coordinates
AXAF-HSC-1.1  (000,001) Off-axis angle (standard), Azimuth (Lefthand)
AXAF-HSC-1.2  (000,000) Standard
AXAF-HSC-2.1 (111,000) Azimuth (latitude), elevation (standard)
AXAF-HSC-3.0 (111,010) Yaw (latitude), Pitch (East-West)
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B Appendix B: Pixel systems and WCS convention

B.1 Physical and pixel systems

In general, each pixel coordinate system (X PIX,Y PIX) has a corresponding linear physical system
(X,,Y,, Z,) related by

ps Lps

X,— X, = $,(XPIX — XPIX0)xA (149)
Y,— Y,y = s,(YPIX —YPIX0)*A

where s, and s, are each +1 or —1 to determine the handedness of the physical system with
respect to the pixel system, and A is the pixel size in physical units per pixel. (XPIX0, YPIXO0)
is the Reference Pixel and (X0, Y}0) is the Reference Physical Coordinate. The Z, coordinate is
defined to be zero in the pixel plane and to complete a right handed set with X,,Y),.

We can attach a physical system to a pixel system in a data file using the World Coordinate
System keywords. For a 2D image with XPIX on axis 1 and YPIX on axis 2,

Table 29: WCS Keywords

WCS Keyword Value

CTYPE1 Name of X,
CTYPE2 Name of Y,
CDELT1 S A
CDELT?2 CAN
CRPIX1 XPIX0
CRPIX2 YPIX0
CRVAL1 X0
CRVAL2 Y0

We can also attach an angular system for tangent plane coordinates (to be added later).
Here are the parameters of the pixel to physical conversions for the systems defined in earlier
sections.

Table 30: Physical to pixel conversion parameters

Pixel system Physical System XPIX0, YPIX0 X,0,Y,0 A 55,5,

CHIP CPC 0.5, 0.5 0.0,0.0 A, +1,+1
TP PTP TPX0, TPYO  0.0,0.0 Ay —1,+1
SKY PSP TPX0, TPY0  0.0,0.0 A; —1,+1
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C Appendix C: HRC MCP corner positions in LSI coordi-
nates

Table 31: HRC MCP corner positions in LSI coordinates

Chip CPC coords for MCP HRC-I,S LSI coords
HRC-I LL (2.672,2.672, 0.000 )

0.000 , 0.000 , 70.711 )

HRC-S3 UR
HRC-S3 UL

26.668 , 99.233 , 0.000 )
-0.332 , 99.233 , 0.000 )

2.134 , -147.881 , 13.500 )
2.134 , -147.881 , -13.500 )

(

HRC-I LR (102.672 , 2.672, 0.000 )  ( 0.000 , 70.711 , 0.000 )
HRC-I UR (102.672 , 102.672 , 0.000 )  ( 0.000 , 0.000 , -70.711 )
HRC-I UL (2.672 ,102.672 , 0.000 )  ( 0.000 , -70.711 , 0.000 )
HRC-S1 LL (-0.332, 6.111 , 0.000 ) (2.489 , 155.875 , -13.500 )
HRC-S1 LR (26.668 , 6.111 , 0.000 ) (2.489 , 155.875 , 13.500 )
HRC-S1 UR (126.668 , 106.111 , 0.000 )  ( 0.000 , 55.905 , 13.500 )
HRC-S1 UL (-0.332, 106.111 , 0.000 )  ( 0.000 , 55.905 , -13.500 )
HRC-S2 LL (-0.332 , 2.672, 0.000 ) (10.000 , 54.000 , -13.500 )
HRC-S2 LR (26.668 , 2.672 , 0.000 ) (10.000 , 54.000 , 13.500 )
HRC-S2 UR (126.668 , 102.672 , 0.000 )  ( 0.000 , -45.999 , 13.500 )
HRC-S2 UL (-0.332, 102.672, 0.000 )  ( 0.000 , -45.999 , -13.500 )
HRC-S3 LL (-0.332 , -0.767 , 0.000 ) (10.000 , -47.904 , -13.500 )
HRC-S3 LR (26.668 , -0.767 , 0.000 )  ( 0.000 , -47.904 , 13.500 )

( (

( (

D Appendix D: FAM encoders and FAM feet

D.1 The FAM

The center of the FAM aperture (FAM payload interface plane) is located at FAO(DFC) = ( 30.5
in, 0, 0 ), or (if there is no misalignment) FAO(XRCF) = (—f + 30.5in, 0, 0).

The moving FAM frame, FAM coordinates, is related to the LSI frame by R(LSLLFAM) =
R(XRCF,DFC). We have

P(FAM) = R(DFC,FAM)(P(DFC)— FR(DF(C)) (150)
where FR is the position of the actual FAM relative to its default position. We also have
P(LST) = R(X,LSI)(P(X) - S(X)) (151)

where S is the position of the SIM and X is the XRCF frame translated to an origin at SO. In our
notation, eq.7 of SER is

P(DFC) — FR(DFC) = R(FAM,DFC)P(FAM)
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— R(FAM,DFC)R(LSI,FAM)P(LSI)
R(FAM, DFC)R(LSI, FAM)R(X, LSI)(P(X) — S(X))
R(FAM, DFC)R(X,DFC)R(X, LSI) (R(DFC, X)P(DFC) — 5(X))

(152)
In particular, taking P(DFC)=0 (origin of DFC coords),
FR(DFC)= R(FAM,DFC)R(X,DFC)R(X,LSI)S(X) (153)
and so
P(DFC) = R(FAM,DFC)R(X,DFC)R(X,LSI)(R(DFC,X)P(DFC)) (154)
for all P, hence
R(DFC,FAM) = R(XRCF,DFC)R(XRCF,LSI)R(DFC,XRCF) (155)
or
R(FAM,DFC) = R(X,DFC)R(LSI,X)R(DFC, X) (156)
giving
FR(DFC)= R(XRCF,DFC)(S(XRCF)—- SO(XRCF))=S(DFC). (157)

The quantities R(DFC,FAM) and FR(DFC) define the rotation and translation of the FAM needed
in terms of the required SIM displacements S(XRCF) and R(XRCF,LSI).

D.2 Movement of the FAM feet

The three feet of the FAM are called A, B and C but I’'ll number them as foot A\, A = A,B,C. Each
foot can move in three (non-orthogonal) displacement directions T fixed in the DFC frame. We
write the components of these vectors in the DFC frame as T;\J

The matrix of vectors Tg\j is

T? = | (1,TBy,, TBz,) (0,1,0) (I'Bx,,TBy,,1)
T (1,0,0) (0,1,0) (TCx,, TCy,,1)

T4 ((1,TAyI,TAzI) (TAz,,1,TAz,) (TAxZ,TAyZ,1)>
(158)

where the zeros come from redundancies in the directions. Approximately, Tg\j = §;j i.e. the T
vectors lie along the DFC unit axis vectors. Thus for instance

TA(DFC) ~ (1,0,0). (159)

Let the origin (boresight) positions of the FAM feet be Opz*. The DFC coordinates of a general
point with FAM coordinates P(FAM) are

P(DFC) = R(FAM, DFC)P(FAM) + FR(DFC). (160)
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Motion of FAM feet

Tz

,@ T=UxTx+UyTy+UzTz
Ty

Tx

Figure 23: FAM Feet

The FAM coordinates of each foot Pp,(FAM) remain constant during motion of the FAM, since
the feet are rigid with respect to the FAM; thus the FAM coordinates of the feet are numerically

equal to the DFC coordinates at the origin position, i.e.
Prp*(FAM) = Opp*(DFC)
and so its DFC coordinates are
Prp*(DFC) = R(FAM,DFC)Opp*(DFC) 4+ FR(DFC)
and hence the foot has been displaced by
AF* = (R(FAM,DFC) —1)Opr* + FR

Let the motor displacement along foot lambda, displacement direction j be UjA.

components of the displacement in DFC coordinates are
A ArA
(where the summation convention does not apply to the A index) so

UM = (Rij(FAM,DFC) — 6;)0} + FR;
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or
Ur = (T7")i ((Rij(FAM, DFC) - 6;;)0} + FR;) (166)
We now use the relation
R(FAM,DFC) = R(XRCF,DFC)R(LSI,XRCF)R(DFC,XRCF)= RXP"R'"*RPX  (167)
where we introduce in the second form a more compact notation; then:
Ur = (T7i (RYPREXRDY — 6,5)0) + FR;) (168)
This equation allows us to derive the required motor displacements for a given XRCF configuration
(RiLjX , FR;). We can also invert it to find the actual XRCF configuration given the encoder values.
First we relabel the six independent motor axis values as integers g(\,i)=1,6 as follows:

9(4,1) =1
9(4,2) = 2
A,3) = 3
?EB,l)) _ (169)
g(B,3) = 5
g(C;3) = 6

and ignore other combinations of lambda,i. We similarly introduce the six independent XRCF
configuration parameters roll, pitch, yaw, FR1, FR2, FR3. Now we have six equations in six
unknowns. Let’s write the R*X matrix in terms of the nominal configuration value and the small
change from the nominal configuration. Then

LX _ pLX
R"* = R" +dR,Aa, + dR, A, + dRyAY (170)
where
—sina, coSay  COSQz COSQy COST  — COS (y COS (ty SIn T
dRy — —cosas —sina, cosr sina; sinr (171)
—sinazsinay  cosaysinay cosr  —cosay sinay sinr
—cCcosa;sinay —sina;sinay cosT — cosay sinr  sina; sin ay sinr — cos ay cosr
dR, = [ o 0 0 (172)
COS Orz COS Oy sin a; COS iy COST — sin ay sinr —sinay cosr
0 —sina,cosaysinr —sinay, cosr  —sina; cos ay cosT + sin ay cosT 4 sinay sinr
de = 0 —cosagsinr —COS Qz COST (173)
0 —sina;sinaysinr +cosay cosr  —cosay sinr
Further assuming the DFC to XRCF boresight angles to be small we write
1 d)EF —Opr
XD
R*™" =1 —¢pr 1 YEF (174)

Orr —Ypr 1

and so

D mLX DX dR11 + ¢(dR21 + dR12) — O(dR31 + dR13) dR12 + ¢(dR22 — dR11) — 0dR32 + ydR13  dR13 + pdR23 + O(dR1]
R*7dR" R”* = | dR21 + ¢(dR22 — dR11) + dR31 — 0dR23  dR22 — ¢(dR21 + dR12) + )(dR23 + dR32) dR23 — pdR13 + ¢(dR3!
dR31 + 0(dR11 — dR33) — YdR21 + ¢dR32 dR32 + 0dR12 + (dR33 — dR22) — ¢dR31  dR33 + 0(dR31 + dR13)

(175)
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D.3 Dither correction

We need the LSI origin as a function of time. Then we can convert to HRMA source coordinates.

We get six translation stage encoders, measuring Ul (U Az), Ul (U Ay), Ul3(UAz), U2,(UBz),
U23(UBz), U33(UC%). From these we can derive the DFC positions of the FAM feet. We need to
invert to get the FAM parameters FR(DFC) and R(DFC,FAM). The formula

FF,(DFC)=R(FAM,DFC)FF0,DFC)+ FR(DFC) (176)
represents 9 simultaneous equations in six unknowns ( 3 Euler angles and 3 FR coordinates).
1. Encoders to FAM foot positions:

FF,(DFC) = FF0;(DFC) + U(i);Ty; (177)

2. FAM foot positions to FAM position and orientation: Calculate R(DFC,FAM) and
FR(DFC) by inverting the equation for F'F;.

3. SI frame position and orientation from FAM:

The SI origin is at
S(XRCF)=S0(XRCF)+ R(DFC,XRCF)FR(DFC(C) (178)
and the orientation is

R(LSI,XRCF) = R(DFC,X RCF)R(DFC, FAM)R(XRFC, DFC) (179)

We derive the offsets from nominal, i.e. AS, Aq,, Aa,, and hence get the correction factors
from DETX, DETY to X, Y in the form of an aspect solution.

E Appendix E: Note on existing aspect solution software

For the record, here is the formula for applying aspect as implemented in the PROS system: given
nominal roll 8, detector pixel center X0,Y0 and aspect translation offsets A, A, and roll offset A,
we have

(X —X0) = (DETX —X0)cos(d +A,) — (DETY —YO0)sin(§ + A,) + Ay cosf — A, sind
(Y -Y0) = (DETX —X0)sin(0 + A,) + (DETY —Y0)cos(f + A,) + A, sinf + A, cos b
(180)
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