
CXC-DM-002

CXC Data Model

Vol. 2

Data Model Abstra
t Design

Jonathan M
Dowell

Chandra X-ray Center

O
tober 22, 2001

Contents

1 Introdu
tion 4

1.1 Overview of the Model . 4

1.2 What is a Data Model? . 4

1.3 Summary of motivation . 6

1.4 Problems and Solutions . 6

1.5 Informal Introdu
tion to the Data Model . 9

1.6 Table
olumns . 9

1.7 Table Attributes . 10

1.8 Binned Data . 10

1.9 Arrays and Images . 10

1.10 Des
riptors and Elements and Components . 10

1.11 Sta
ks . 11

2 Some general requirements 13

2.1 Data Model and �les . 13

2.2 Compatibility Requirements on FITS kernel . 13

2.3 The native data model in FITS . 13

2.4 Intera
tion of Data Model and other infrastru
ture . 15

3 The CXC Data Model, SDS Version 2.0 15

3.1 DM Table . 17

4 Table Data Se
tion 17

4.1 Table Data . 17

4.2 Des
riptor . 19

4.3 Array Dimensions . 23

4.4 Array Axis . 23

4.5 Axis Groups . 23

4.6 Parent Des
riptor . 24

4.7 Coordinate Transform Des
riptor . 24

4.8 Column Data Des
riptor . 27

4.9 Interval type . 27

4.10 Elements . 28

4.11 Region Des
ription . 30

4.12 Table Data Cell . 30

4.13 Table Row . 30

4.14 Des
riptor Groups . 30

5 Data Subspa
e 31

5.1 Introdu
tion . 31

5.2 Unions of subspa
es . 32

5.3 General de�nition . 33

6 Header 37

6.1 Key Data Des
riptor . 37

6.2 Grouping Des
riptors . 38

2

7 DM Images 38

7.1 Images and Tables . 38

8 Case studies and examples 38

8.1 FITS
ase study: PSPC o� axis histogram �le . 38

8.2 Case Study: Bary
enter Corre
tion Algorithm . 49

3

1 Introdu
tion

The S
ien
e Data Systems Group at the Chandra X-ray Center (CXC) developed the CXC Data Model (DM) as

a generi
 data model for astronomi
al data, underlying the CIAO data analysis system and Chandra pro
essing

pipelines.

This do
ument des
ribes the design of version 2 of the DM developed in 2001.

1.1 Overview of the Model

Our data model has a number of high level goals:

� Create data �les whi
h are more fully self-des
ribing, while retaining ba
k
ompatibility in the sense that

existing ar
hival FITS �les will be interpreted
orre
tly.

� Systematize the treatment of data �ltering, units, and
oordinate systems, unifying the
urrent approa
h whi
h

involves a large number of spe
ial
ases.

� Allow programs to use both FITS and native IRAF �le formats inter
hangeably, by supplying a format-

independent interfa
e layer.

� Allow users to write their own programs easily by providing a subroutine interfa
e whi
h makes a

essing the

data easy and removes the need for the user to worry about the details of the �le format.

� Support advan
ed virtual �le and �ltering operations by providing a uniform
onvention for re
ording the way

a �le has been �ltered.

The intent of the model is to des
ribe an abstra
t representation of a generi
 astronomi
al dataset and to layer

extra stru
ture onto existing �le formats to make them more fully self-de�ning. Our datasets in
lude both binned

(image) and tabular data,
orresponding to the IRAF IMH and QPOE formats or the FITS IMAGE and BINTABLE

formats. In this do
ument I will make expli
it parallels to the FITS format sin
e it is the externally de�ned export

and ex
hange format. An important aspe
t of the design presented here is that existing FITS �les will be interpreted

orre
tly by the data model. This is a
hieved through
areful use of default values for keywords in the mapping to

FITS.

1.2 What is a Data Model?

A data model is an abstra
t des
ription of our datasets. (Datasets may be �les, or groups of �les that we want to

onsider as a unit). It tells us the di�erent properties and attributes a dataset
an have (e.g. `a dataset
onsists of a

header and a table or an array; a table has n
olumns ea
h with a name, a data type, a unit, ' ... et
.) This des
ription

of the data is possible be
ause all of our many di�erent datasets
an be thought of as spe
ial
ases of a very small

number of basi
 types of dataset. In using the data model to des
ribe a dataset, then, we have a way of de�ning

that dataset whi
h makes expli
it its di�eren
es from all other datasets. Furthermore, the data model
ontains no

information about the storage format of the data. Thus our de�nition of the stru
ture of a dataset is
ompletely

separated from the way in whi
h that stru
ture is implemented on disk - we distinguish between information that is

truly part of the s
ienti�
 data and information that is bookkeeping or spe
i�
 to the �le format. This makes it easy

to support multiple �le formats with the same data model. The data model
an be implemented as an API whi
h

lets you a

ess and manipulate the data using the
on
epts of the data model.

The data model gives the appli
ation writer an interfa
e to the data whi
h is independent of the details of the �le

format. It also provides a standardized stru
ture and language whi
h brings out the similarities between di�erent

kinds of dataset. This standardization is an important advan
e beyond the standardization provided by parti
ular

data formats su
h as FITS.

4

� We make the treatment of the data independent of the
hoi
e of disk �le data format, thus allowing the

algorithm to
on
entrate on the s
ien
e and making it easy to support the open ar
hite
ture of di�erent data

formats. It means that appli
ations writers don't have to worry about the spe
i�
s of the data format, those

are hidden in the interfa
e subroutines.

� The model layers extra stru
ture onto the
on
epts impli
it in the underlying data formats.

� We des
ribe all data in a
ommon stru
ture; by imposing a uniform des
ription we
an support generi
 tools.

We have a way of des
ribing a general data �le independent of the spe
i�
 stru
ture of the �le (PHA �le, event

�le, et
). This means that when you make a new kind of �le, existing tools
an still do something with it.

FTOOLS does this at a
ertain level, allowing basi
 �ltering of generi
 tables, and
an be thought of as having

a very simple data model
onsisting of table
olumns with no extra attributes. Our software will go well beyond

this, dealing with
oordinate systems and other auxiliary quantities in a standardized way.

� Further, all this makes the data more self-des
ribing.

� We expli
itly tie information relating to ea
h image axis or table
olumn to that axis or
olumn. In FITS, there

is some of this: a keyword like CRVAL4 tells you the
oordinate value for axis number 4. However, there are a

lot of other keywords that don't do this and
ould - for instan
e, TSTART gives the start time for a dataset,

but there is no expli
it expression of the fa
t that this quantity is related to the TIME
olumn in the data.

The FITS kernel to the DM understands this parti
ular asso
iation, and puts it into the DM stru
ture whi
h

allows a generi
 asso
iation of a range of values with a
olumn.

� Note that a single data model table may
orrespond to many FITS tables. For instan
e, the Good Time

Intervals, whi
h in the data model are just the ranges for one axis of the data subspa
e, have to be kept in a

separate table in the FITS �le. At the moment FITS �les often have an assortment of tables in them, some

of whi
h are related to ea
h other and some of whi
h aren't. Using a data model helps us make mu
h more

sensible de
isions about whi
h FITS tables to group together in a single �le. For instan
e, for an EVENT �le

it helps us realize that the Good Time Intervals are truly just an auxiliary pie
e of information des
ribing the

main table, while ROSAT Temporal Status Intervals are (at least on the data model I present here) a separate

data obje
t that has meaning separately from the EVENT data.

� The
on
ept of a data subspa
e lets us unify the treatment of good time intervals, spatial regions, and �lter

ranges. This makes these
on
epts independent of whether a parti
ular
olumn
ontains temporal, spatial or

spe
tral info, and lets us be mu
h more systemati
 about asking the question `to what range of data values

does this dataset apply?'.

� Grouping together of header keywords helps us propagate related info more easily, makes it easier to spe
ify

the de�nition of new �les in terms of old ones, and improves user readability of headers.

� The existen
e of a data model helps us in
lude support for new features (e.g. un
ertainties) in a systemati

way, so we don't have to deal with hundreds of spe
ial
ases ea
h time. This applies both to the new features

we add now and to future features in later versions of the model - in other words, having an overall data model

redu
es overhead in in
luding new fun
tionality, be
ause it's
lear how to add that new fun
tionality in a way

that will work throughout the system.

� The separates out the s
ien
e des
ription from the details of a data format, allowing us to de�ne
lean mappings

to di�erent data formats. This makes it easier to support new data formats, sin
e the I/O is so well isolated.

How
an we be all things to all systems? The
ru
ial idea is the
on
ept of a data model. By this we don't

mean a model of a spe
i�
 dataset, like a spe
tral �tting fun
tional model, we mean a model of the
on
ept of

5

astronomi
al data. More spe
i�
ally, we mean an abstra
t des
ription of the stru
ture of our data separate from its

implementation in a parti
ular disk storage format. We note for the software-literate that this abstra
t des
ription

an be - but does not need to be - given a manifest software implementation as an obje
t or set of obje
ts in an

obje
t-oriented language. On
e we have our data model, we
an map it to the parti
ular disk data formats we wish

to support. This allows the same
ode to read FTOOLS FITS �les or PROS QPOE �les and `see' them (after a

translation layer) as identi
al sour
es of information. The individual tool will not usually need any expli
it `if FITS

then'
ode, and will not even know what type of �le is being read.

In prin
iple su
h a data model
ould be arbitrarily
omplex with many spe
ial
ases. A
tually it turns out that

almost all our data
an be des
ribed by a single kind of obje
t, perhaps with a few simple
avors. This fa
t is

what gives FTOOLS its strength: mu
h X-ray data analysis
an be a

omplished by fairly general manipulations of

FITS binary tables. We take FTOOLS' advan
e one step farther by separating our uni�ed data des
ription from the

spe
i�
s of the FITS format (2880-byte blo
ks, indexed keywords, storing the stru
ture of the main data as header

keywords, no units on keywords, et
), whi
h are not relevant to any of the s
ien
e algorithms. This separation turns

out to be extremely powerful, and allows us to do a lot more than just support multiple data analysis
ontexts.

The existing pa
kage tool kits (FDUMP, TPRINT, et
..) will work on our �les but may lose the extra layers of

meaning provided by our data model. We therefore provide a new set of infrastru
ture tools whi
h will do generi

operations on our �les. We have uni�ed and extended the PROS
on
epts of �lters, regions and good time intervals

into a single sele
tor
on
ept; this greatly in
reases the
exibility of �ltering.

1.3 Summary of motivation

By generalizing our approa
h, we
an get by with fewer distin
t tools. By writing the tools using our data model,

and modern software approa
hes (
areful layering, self-des
ribing data, et
.), we
an make ea
h tool more
exible,

able to do sensible things with data that is in slightly di�erent formats, or even data representing entirely di�erent

physi
al quantities. We try and strip the algorithm to its bare bones and en
ode the spe
i�
s of the data in the self

des
ribing data �les, not in the
ompiled
ode. By designing in low level support for operations on multiple data

�les, we make easier the task of doing the same operation a
ross su
h sets of data �les and, if desired,
ombining the

results. The existen
e of a uni�ed data model makes
ommuni
ations among programs, and between programs and

GUIs, easier to systematize. Eventually, by in
luding un
ertainties, upper limits, units, et
., in our data model, we

will standardize their treatment and so allow generi
 tools to operate on them.

1.4 Problems and Solutions

In this se
tion I dis
uss various limitations we've
ome a
ross in the way
urrent systems handle abstra
t data

manipulation. I
on
entrate on examples from PROS and FITS sin
e they are the systems I am most familiar with.

� PROBLEM: PROS regions are handled in a di�erent way from time, PHA �lters.

� SOLUTION: Introdu
e the idea of a Data Subspa
e whi
h handles �lters on all data axes in a uniform way.

The user
an spe
ify a spatial region anywhere they
an spe
ify a PHA or time �lter. The Data Subspa
e for

a data obje
t re
ords the way that obje
t has been �ltered. If you like, it is the �lter that has been applied to

the data so far. The Good Time Intervals are part of this �lter.

� PROBLEM: Making a dete
tor
oordinate image was messy in PROS (PROS keyx, keyy syntax).

qplist "test.qp[pi=40:90℄" region="
 2048 2048 20"

lists photons in a given sky region and PI range, but

6

display "test.qp[pi=40:90℄"

does not take a region argument - you
an't display it. To list photons in a dete
tor
oordinate region,

qplist "test.qp[key=(detx,dety),pi=40:90℄"

region="
 2048 2048 20"

whi
h is ugly be
ause the spe
i�
ation of the region and the statement that the region applies to dete
tor

oordinates are separated.

� SOLUTION(1): Make regions part of the virtual �le syntax, so you
an do:

dmlist "test.qp[(detx,dety)=
ir
le(2048,2048,20),pi=40:90℄"

- this is mu
h more
oherent.

� SOLUTION(2) The s
ientist thinks in terms of `dete
tor position' and `sky position' as single attributes of the

data. Make our software able to work on two-dimensional items named 'DET' and 'SKY' to allow a natural

system of

dmlist "test.qp[det=
ir
le(2048,2048,20),pi=40:90℄"

Make the data model support 2D obje
ts with a name for the obje
t and for ea
h of its
omponents (e.g. obje
t

name SKY,
omponent names RA and DEC). This makes it easy for a programmer to make a �le whi
h knows

that it
ontains a bun
h of SKY ea
h of whi
h
onsists of an RA and a DEC. Current �les don't have any way

of letting the software know whi
h
olumns are paired together as positions.

� PROBLEM: No standard way to re
ord how the data has been �ltered on PHA or PI.

� SOLUTION: The Data Subspa
e does this automati
ally. Thus the software
an, if properly
oded, know

where to look to �nd out whi
h (energy-dependent) point spread fun
tion would be mat
hed to the
urrent

image - it looks for a PI axis in the image's data subspa
e.

� PROBLEM: Some data manipulation tasks need you to go ba
k and forth between header keywords and table

olumns, but header keywords in FITS don't
ontain as mu
h information as table
olumns (short names, no

units, no ve
tors). Examples: we wish to
ombine event lists from ACIS
hips I2 and I3, whi
h have header

CHIP ID values giving the
hip ID, getting an event list with an extra CHIP ID
olumn in whi
h ea
h row is

either I2 or I3. Or, we wish to
ombine tables of sour
es dete
ted with three di�erent
ell sizes, to make one

table with a CELL SIZE
olumn. The resulting table needs to know the units in whi
h CELL SIZE is measured.

A
tually, it would
urrently have to be CELL SIZ sin
e the header keywords
an only be 8
hara
ters.

� SOLUTION: The data model supports the extra information. The I/O library handles a
onvention to write

this to FITS in a way that is ba
k
ompatible with existing data, and has now been in
orporated as well in

Goddard's FITSIO software. The tool program
an ask for the same information about a keyword that it

would for a
olumn entry, so the
ode is more uniform - fewer spe
ial
ases.

� PROBLEM: We have a blo
ked sky image and want to know about both the original plane pixel
oordinate

system and the
elestial spheri
al
oordinate system. Most FITS appli
ations only support one set of WCS

keywords for an image.

7

� SOLUTION: For array obje
ts, allow an `physi
al'
oordinate system and an `world'
oordinate system to retain

both sets of information. Allow arbitrary numbers of world
oordinate systems for ea
h obje
t, so that for

instan
e one
ould atta
h a gala
ti

oordinate system to the image as well. We use FITS keyword
onventions

that are under
onsideration for adding to the FITS standard.

� PROBLEM: Want a single program to browse and plot all kinds of data �les, labelling axes sensibly.

� SOLUTION: Ea
h axis in the data is liable to have both a lo
al and a `world' value: pixel position and
elestial

position, mission time in se
onds and
alendar date, pulse height and nominal energy. The data model treats

all of these as generi

oordinate systems, so a plotting program
an re
ognize them automati
ally. Example:

pulse height versus time image, with nominal energies and
alendar dates automati
ally labelled.

� PROBLEM: Want to support a table with images embedded in one of the
olumns, for instan
e aspe
t
amera

re
ords.

� SOLUTION: Introdu
e a data model
onvention to handle this
ase, whi
h is supported to a limited extent in

FITS by the multidimensional array TDIMn syntax; further simplify by
onsidering an ordinary image to be a

spe
ial
ase of a table with one row and
olumn.

� PROBLEM: Want to
reate datasets su
h as an array of x-ray
olors versus best �t parameters, and invert to

make an array of best �t parameters versus x-ray
olors.

� SOLUTION: Provide data model support for arrays whose elements are themselves n-dimensional.

� PROBLEM: In a derived �le like a light
urve, we may make many
olumns (raw
ounts, ba
kground
ounts,

net
ount rate, et
.) even though the basi

on
ept is of time versus net
ount rate. We want our plotting

software to plot the two
olumns of most interest by default. Also, indexing operations may also be
arried

out on event list
olumns of `most interest'.

� SOLUTION: De�ne `preferred'
olumns (axes) of the table, whi
h will rank a subset of the
olumns in an

order whi
h may be di�erent from the order of the
olumns in the table. A plotting program whi
h plots two

des
riptors (quantities) against ea
h other will then take the �rst two preferred
olumns if su
h exist, otherwise

it will take the �rst two
olumns in the table
olumn order.

� PROBLEM: Want to deal with upper limits properly.

� SOLUTION: The interfa
e to the data �les should be able to
ope with any data item being either a dete
tion,

an upper limit, or a dete
tion with un
ertainty. Other software, however, will see the un
ertainty ranges as

separate
olumns and won't know that a parti
ular value is an upper limit.

This solution is not yet implemented in the CXC DM, but support for NaN entries and null entries is present.

� PROBLEM: We have a set of PSFs whi
h were
reated at XRCF at di�erent energies; they are labelled with

a `header keyword' ENERGY. We wish to plot the FWHM of the PSFs versus energy. In an existing system,

one would run the
al
ulate-FWHM program on ea
h PSF �le separately,
apturing the results and running

a table
reation program to
ombine them in a single result table (or noting them down on paper and typing

them ba
k in!); plotting the results might not be trivial either.

� SOLUTION: We should be able to do this with three
ommands: one to sta
k the PSF �les on energy,
reating

an index �le
onsisting of a table of energy versus �lename, a se
ond to run the
al
ulate-FWHM program on

the sta
k, and the third to plot the resulting �le. In our system, the added bonus is that if the
al
ulate-FWHM

program also
al
ulates un
ertainties, these will be pi
ked up by the plotting program.

This solution is not yet supported; a spe
ial sta
king tool (to make sta
ks with index
olumns like energy...) is

needed to do this and will be
onsidered for future development.

8

1.5 Informal Introdu
tion to the Data Model

In our model, ea
h dataset
onsists of an ordered set of `Blo
ks'. A DM Blo
k
onsists of a table whose
olumns may

be s
alars, ve
tors, arrays, or ranges. Header des
riptors may be atta
hed to the table as a whole, or to individual

olumns or to the data subspa
e. An important spe
ial
ase of a blo
k table is
alled an Image, and we will often

onsider blo
ks to be of two types, Table and Image (even though stri
tly speaking an Image
an be treated as a

kind of Table).

A table
onsists of a header, together with a set of rows and
olumns. I will refer to the interse
tion of a row

and a
olumn as a `
ell'. Some of our tabular data produ
ts will
ontain small embedded images. For instan
e,

aspe
t
amera data will in
lude 6x6 pixel images of ea
h �du
ial light in every row of the table (the row represents

the information from one aspe
t
amera exposure), and FAINT mode event data has 3x3 images of the event island

in the PHAS
olumn. Also, we may eventually in
lude small `postage-stamp' images of sour
es in our sour
e list

data produ
t. This suggests a theoreti
al simpli�
ation: if an image
an be in a
ell of a table, we may
onsider an

image on its own to be just a table with one
ell. So, instead of two di�erent fundamental types of data, we have a

single type - the `table-whi
h-
an-
ontain-images'. We
an then spe
ify that a table with one row and one
olumn

may, if desired, be stored on disk using an image format instead of a binary table format. We have thus moved the

distin
tion between a table �le and an image �le to a di�erent level: an image is a
omponent of a table, rather than

its peer. We still, of
ourse, need to have interfa
es to operate on images, so this simpli�
ation is minor in pra
ti
al

terms.

The header in a FITS �le is a heterogeneous
olle
tion of information. Some of the keywords des
ribe the �le's

stru
ture, while the remainder are metadata: data whi
h apply to the �le as a whole, but are true s
ien
e data

rather than des
riptive of the �le stru
ture. We want to layer extra stru
ture on the �le so we
an tell the di�eren
e

between these types of header keyword. Some of the metadata has parti
ular importan
e: it des
ribes how the data

in the table
olumns was sele
ted. We treat this kind of information in a systemati
 way and isolate it
on
eptually

as the table's `data subspa
e'.

The �gure below gives a s
hemati
 example of a
ompli
ated table.

’3C 273’

’Cas A’

(158.4, 218.3)

(22.1, 38.2)

0

0

0

0

2

4

12

4

3
1

2

4

12

3

2

1

detx

dety

dety

detx

32.8 + 0.4-

41.9 + 0.2-

Name Position Image Flux
tpx tpy

EQPOS

(RA,DEC) Intensity

counts/s

Coord

System
Coord System

Cell Size 0.1 degree

Table

attribute

Figure 1: Example of a
ompli
ated table. The table is a sour
e list
ontaining `postage stamp' images of ea
h sour
e.

The position
olumn has a
oordinate system atta
hed to it, the
ux
olumn has un
ertainties, and the whole table

has metadata su
h as the sour
e dete
tion
ell size.

1.6 Table
olumns

FITS already provides support for ve
tors and arrays in table
olumns. However, there are several enhan
ements

we need. Parti
ularly for the
ase of positional data, we want to have paired table
olumns: for instan
e, DETX

and DETY paired as DETPOS, or RA and DEC paired as EQPOS, with both the individual and the pair names

available in the �le. We also want to support un
ertainties and upper limits, whi
h implies something like having

9

a
olumn FLUX and a
olumn FLUX ERR (no problem right now) together with a stru
ture whi
h ties the two

together as a single obje
t (Flux with error). Both of these enhan
ements, and the desire for ba
k
ompatibility,

lead us to a system with a low level (FITS) set of raw
olumns and a high level (Data Model) set of
olumns, with

one high level
olumn mapping to several low level
olumns.

1.7 Table Attributes

Table attributes are the equivalent of header keywords. Unlike FITS header keywords, we support the various

des
riptor attributes su
h as units, et
. FITS allows 'indexed keywords' whi
h are really 1-D arrays of keywords: we

want to support this at a higher level, and add support for `ve
tor keywords', e.g. grouping together RA and DEC

as a single high level table attribute EQPOS.

We'd also like to spe
ify some attributes as belonging to spe
i�
 table
olumns rather than to the table as a

whole. These are
alled
olumn attributes. Similarly, the data subspa
e may have its own attributes: livetime is an

example.

1.8 Binned Data

An event list table
onsists of values whi
h represent pre
ise points in an n-dimensional spa
e. In
ontrast, we often

deal with binned data in whi
h the values represent
ells of �nite volume in the spa
e. The simplest example is a

histogram with equal size bins, but we also have datasets with logarithmi
 bins or even arbitrary bins (e.g. those

hosen to mat
h the position of sharp features in a spe
trum). A binned data
olumn
an use the same me
hanism

as the un
ertainties for a normal
olumn, sin
e it just involves spe
ifying a range.

1.9 Arrays and Images

When we have binned data with ordered, equal size,
ontiguous bins, the
olumn of data may be de�ned impli
itly by

spe
ifying the start value and step size. Suppose we have a table whose
olumns in
lude three binned data
olumns

and two point data
olumns, one of whi
h happens to be a 3D position:

C1 C2 C3 C4 C5

[0.5:1.5) [10.0:11.0) [4.8:4.9) 1082.2 (0.0, 18.3, -812.3)

[1.5:2.5) [10.0:11.0) [4.8:4.9) 182.3 (4.3, 12.2. -712.3)

....

[0.5:1.5) [11.0:12.0) [4.9:5.0) 1211.2 (2.1, -1.2, -271.3)

[1.5:2.5) [11.0:12.0) [4.9:5.0) 1232.1 (6.2, -4.2, -0.023)

....

Here the rows are ordered so that C1
hanges most rapidly, followed by C2 and then by C3 so that the grid of

ells in the three dimensional C1, C2, C3 spa
e is traversed in a regular order. We
an repla
e this table by one

in whi
h only the values for C4 and C5 are in
luded expli
tly. The information about the binned C1, C2, and C3

datasets are stored in the des
riptions of the stru
ture of quantities C4 and C5. C4 is a normal 3-dimensional image;

the pixels of the 3-dimensional array of values in the C4
olumn are mapped to values of C1, C2 and C3, whi
h are

alled the axes of the image. C5 is a more
ompli
ated obje
t, an image whose pixels are ve
tor-valued. Support

for obje
ts like C5 (arrays of ve
tors) is new, but gives added
onsisten
y to the data model. Arrays of ve
tors are

useful, for instan
e, when the varying
entroid position of a sour
e is measured as a fun
tion of several parameters.

1.10 Des
riptors and Elements and Components

The building blo
ks of our data are
alled Des
riptors and Elements. The Des
riptor represents a named quantity

whi
h has an array of Elements asso
iated with it; the simplest
ase is when the array is trivial and there is only

10

one Element for the Des
riptor. The Element is the value of the Des
riptor, sometimes a simple s
alar value but in

general itself a ve
tor. Ea
h member of the ve
tor has its own name - for instan
e a des
riptor EQPOS representing

the equatorial position of something, with a dimensionality of two, has
omponents
alled RA and De
. In the

original DM design these
omponents only existed as names, and the data they pointed to was a

essed through

the EQPOS des
riptor. In the �nal implementation, pra
ti
al
onvenien
e drove us to
reate impli
it `
omponent

des
riptors' for ea
h member of a ve
tor des
riptor, so that RA and De
 themselves are s
alar des
riptors. In general,

any ve
tor des
riptor will have asso
iated s
alar
omponent des
riptors for ea
h of its
omponents.

Let's
onsider a simple physi
al quantity: the energy of the Fe K line, whi
h we wish to store as an obje
t

FE K ENERGY. Suppose we have measured it to be 6:4� 0:3keV . We will store the name FE K ENERGY and the

unit keV as part of a Des
riptor of real data type. Asso
iated with this Des
riptor is an Element of dimension 3: the

values 6.50, 5.5 and 7.3 representing the main value and the un
ertainty range. We store the range sin
e this lets us

easily handle the
ase of upper limits: an upper limit is just an element for whi
h the lower bound of the un
ertainty

range is zero or negative. If we get a whole set of measurements of FE K ENERGY, we retain the single Des
riptor

and asso
iate many sets of values with it. In the
urrent release, the DM has no knowledge of the semanti
s - that

the range is a
tually an un
ertainty on the value - and
annot support the
ase where there is a whole table of values

sharing a single un
ertainty range in the header. The new design will support the
on
ept of 'element type' whi
h

en
odes this knowledge, although it may be a while before the software is upgraded to do anything useful with the

information.

Another type of Des
riptor is a Filter des
riptor, whi
h has an range but no value. Filter des
riptors are used to

des
ribe �lters, regions, intervals, et
.

Multiple values asso
iated with a single Des
riptor are
alled Arrays. Arrays of s
alar Elements are familiar; arrays

of ve
tor Elements are more
ompli
ated, but are sometimes needed. The simplest kind of array is a one-dimensional

array, whi
h simply has a given number of Elements. Note the di�eren
e between an array with dimensionality 1

and dimension n (n 1-dimensional Elements), and a ve
tor with dimensionality n and dimension 1 (1 n-dimensional

Element).

(14.2, 31.8, 2.2)

x y z

POSITION(3) The numbers represent different

physical quantities or axes

PHA(9)

(14, 21,11,2,3,48,1,0,2)

The numbers represent different

examples of the same quantity

(values along a single axis)

Figure 2: Di�eren
e between a ve
tor and a 1-D array. In the �rst
ase, ea
h
omponent has a name (e.g. `y'); you

would plot the n-tuple as a single point in n-dimensional spa
e. In the se
ond
ase, the di�erent
omponents do not

have names. You would plot this as 9 di�erent points along a 1-dimensional spa
e. We also use arrays of ve
tors:

for example, PSF
entroid position versus energy and o� axis angle.

1.11 Sta
ks

To work more e�e
tively with multiple sets of data, we introdu
e the
on
ept of sta
ks. The simplest sta
k is just

a list of �les. However, a more powerful kind of sta
k is a table one of whose
olumns
ontains �lenames: in other

words, we have a list of �les whi
h is labelled by the other
olumns. As an example, let us
onsider a set of point

spread fun
tion
alibration images whi
h have been taken at some quasi-random set of energies and o� axis angles

and have similarly random �lenames PSF42, PSF13, PSFA1, et
. We make a table PSFSTK as follows:

ENERGY THETA PSF_FILE

real real file

11

0.3 42.1 PSF42

0.3 0.1 PSFA1

....

5.2 0.2 PSF13

This gives us a `library' of PSFs whi
h we
an look up as a fun
tion of the two parameters ENERGY and THETA.

If the ENERGY and THETA parameters are table attributes (header keywords) in the individual PSF �les, we
an

imagine a program whi
h would make this sta
k �le PSFSTK automati
ally by saying: look at all the �les in this

dire
tory, and for ea
h �le with a table attribute OBJECT whose value is equal to `PSF', add a re
ord to the sta
k

labelled with the values of the table attributes ENERGY and THETA. I will
all this operation `sta
king (a set of

tables) on ENERGY and THETA'.

We then de�ne a `sta
k operation' at the tool level as follows: if the e�e
t of a tool T on a non-sta
k �le F is to

make a multi-line table T(F), then the e�e
t of the tool on a sta
k is to make a new sta
k table where ea
h entry F

in the sta
k
olumn is repla
ed by the name of T(F). If the e�e
t of T is to make an output �le with a single line,

then the entry F is repla
ed by the
ontents of that line (so the output �le is no longer a sta
k but a single table).

To
ontinue the earlier example,
onsider two tools T1 and T2, where T1 takes the histogram of the image pixel

values, and T2 returns a one-line table
ontaining the
entroid position and total
ounts. Running T1 on PSF42

makes a new �le PSF42 IMHIST (say) with several rows and
olumns. Running T2 on PSF42 makes a new �le

PSF42 CTR with several
olumns but only one row:

XCEN YCEN TOT_CNTS

real real integer

42.3 121.2 141412

Then running T1 on PSFSTK should make a new sta
k as follows:

ENERGY THETA IMHIST_FILE

real real file

0.3 42.1 PSF42_IMHIST

0.3 0.1 PSFA1_IMHIST

....

5.2 0.2 PSF13_IMHIST

as well as making all of the individual IMHIST �les. But running T2 on PSFSTK should make a single �le

ENERGY THETA XCEN YCEN TOT_CNTS

real real real real integer

0.3 42.1 42.3 121.2 141412

0.3 0.1 52.1 1109.1 32821

....

5.2 0.2 9212.2 104.2 1821

The power of this is that it allows us to do aggregate analysis easily: we
an now use the generi
 plot tool to

plot, say, XCEN versus THETA to see how those two parameters vary with ea
h other.

This enhan
ed sta
k
apability will be implemented in the new DM design via spe
ial tools, rather than being

part of the intrinsi
 DM syntax.

12

2 Some general requirements

2.1 Data Model and �les

We require that the data model re
e
t the stru
ture of our s
ien
e data as generally as possible. Our paradigm for

analysing data involves applying tools (programs) to one or several input data �les, and generating output �les. Data

�les may be `standard data produ
ts' whose stru
ture and
ontents are prede�ned in detail by the CXC, `user-derived

data �les' whi
h follow our general paradigm but whose detailed stru
ture is spe
i�ed by the user, and `
ompatible

data �les' whi
h are produ
ed by external analysis systems (in
luding ar
hives of older missions) but whi
h are

suÆ
iently similar in stru
ture that our software
an re
ognize them. It turns out that almost all our data
an be

des
ribed in terms of instantiations of a single kind of obje
t, whi
h I will
all an DM blo
k (or DM Table). There

is also a spe
ial
avor of DM blo
k
alled an DM Image whi
h is treated separately in some
ases.

A requirement is that the division of our data into separate �les should `make sense' to the s
ientist, logi
ally

related information being kept together. An obvious way to do this in the obje
t-oriented paradigm is that ea
h

�le should
ontain exa
tly one DM Table. However, this isn't the way that �les are made by many other software

systems, so we have to support a more general approa
h.

We require that the data model allow the appli
ations programmer to ignore the details of the spe
i�
 �le format

onventions (e.g. FITS, QPOE) but also allow some measure of override a

ess to the spe
i�
 �le format writing

kernels. At least three kernels will be supported by the model, to support writing and reading ASCII text �les, FITS

�les and IRAF �les. By IRAF �les I mean IMH �les and PROS QPOE �les.

2.2 Compatibility Requirements on FITS kernel

We require that as many of the following existing ar
hival FITS datasets should be readable by the FITS kernel

as valid S
ien
e Datasets: Event lists and XSPEC-type PHA and response matrix �les for the following missions:

Einstein, ROSAT, ASCA, XMM-Newton and XTE. This imposes requirements on the FITS keywords used to map

data model stru
tures.

2.3 The native data model in FITS

FITS �les
ontain a set of independent Header Data Units (HDUs). There are several
avors of HDU but the most

important ones are IMAGE and BINTABLE. We will
onsider a FITS �le
ontaining only IMAGE and BINTABLE

HDUs. The HDU
onsists of a header and a data se
tion.

� The header
onsists of an arbitrary number of header
ards.

� A header
ard
ontains a keyword (an 8
hara
ter
ase-insensitive string), a value (of one of a number of data

types), a
omment (a string whi
h is usually ignored by software), a data type (whi
h is not given expli
itly,

but may be dedu
ed from the formatting of the value), and a
ard type (dedu
ed from the keyword name).

� The
ard types are: Mandatory
ards, standard reserved
ards, lo
al reserved
ards, and ordinary
ards. By

lo
al reserved
ards I mean
ards whose keywords are not reserved from the point of view of the FITS standard

but whi
h are given a reserved meaning in some extra
onvention to whi
h the parti
ular FITS �le adheres.

An example is the WCS
onvention whi
h has been proposed for in
lusion in the standard and reserves the

meaning of several extra keywords.

� An IMAGE data se
tion
onsists of an n-dimensional array of numeri
al values. Asso
iated with the IMAGE

data is the data type of the array elements, the number of dimensions, and the size of ea
h axis. This information

is
ontained in reserved header
ards; s
aling and unit information about the data and
oordinate information

about the axes may also be asso
iated with the image in this way.

13

� A BINTABLE data se
tion
onsists of a set of
olumns. Ea
h
olumn has a data type and a name, and possibly

a unit and various
oordinate information. All the
olumns have the same number of entries.

14

2.4 Intera
tion of Data Model and other infrastru
ture

The data model a�e
ts the other infrastru
ture parts as follows:

� The �ltering language des
ribes a virtual dataset in terms of a preexisting one. This des
ription should be

omplete in the sense that it �lls in all the interfa
e requirements of the data model.

� The data model I/O works on �ltered (virtual) datasets.

� The data model is pretty mu
h de
oupled from work like the s
ripts, Sherpa parsing, et
.

3 The CXC Data Model, SDS Version 2.0

In this se
tion I present the detailed design for the data model, developed from the earlier model whi
h was based

on extensive dis
ussions with Martin Elvis, David Van Stone and Peter Patsis. The model represents a very general

kind of table, whose
olumns
an
ontain ve
tors or multidimensional arrays, with asso
iated
oordinate systems

and other metadata. Further metadata
an be asso
iated with the table as a whole or with individual
olumns, and

a `data subspa
e' indi
ates the range of values for whi
h the table is valid.

This version 2.0 (O
t 2001) has been signi�
antly updated from the 1994-1997 versions whi
h des
ribe the design

prior to implementation of the �rst DM release.

A note of explanation is required for obje
t-oriented fans (others may skip this paragraph). A Rumbaugh diagram

for our design, shown below, indi
ates that only a small number of distin
t obje
ts are used. However, I feel that

the Rumbaugh methodology, at least as I have been made to understand it, obs
ures understanding of the true

stru
ture of our data in whi
h multipli
ity and aggregation of instan
es play a key role. I therefore use a slightly

di�erent kind of diagram, whi
h I will
all a stru
ture diagram, whi
h in
ludes stru
tural
omponents whi
h are not

ne
essarily distin
t obje
ts in the OO sense, and whi
h shows separate instan
es of an obje
t if (and only if) the

obje
t is instantiated in a separate role. All of the asso
iates represent `has a' relationships.

15

ASC Table

Data Descriptor

Quantity

Name

Component

Coord Transform

Axis Group

Axis

Row

Element

Figure 3: Rumbaugh diagram for ASC Table/blo
k Data Model, showing the fundamental di�erent obje
t
lasses.

The Data Des
riptor
lass is a
omposite whose
omponents are shown within an en
losing box.

16

In less te
hni
al language, I'm trying to present an abstra
tion of a parti
ular kind of s
ienti�
 dataset. The

diagrams I show are an attempt to illustrate the di�erent
omponents that go to make up this abstra
tion. Ea
h box

is one of these
omponents, and a line going out of the bottom of one box into the top of another indi
ates that the

se
ond box is a
omponent of the �rst. A symbol by the end of the line indi
ates the number of su
h
omponents

that will exist. For instan
e, in the Table Model diagram the symbol
 appears next to both the line from Table

Data to Column Data Des
riptor and the line from Table Row to Column Data Cell. This indi
ates that there are

the same number of Column Data Cells in a Table Row as there are Column Data Des
riptors in a Table Data, and

that we will represent this number as
 (it happens to be the number of
olumns in the table). If no multipli
ity is

indi
ated on a line, there is exa
tly one of the
omponents atta
hed to the parent obje
t.

Text underneath a horizontal line below the name of the obje
t indi
ates parameters (attributes) asso
iated with

that obje
t. For instan
e, the DM Table has a Name. A double line at the bottom of an obje
t box indi
ates that the

stru
ture of the obje
t is
omplex and there's a whole separate diagram for it later on. For instan
e, DSS Des
riptor

is a parti
ular kind of Des
riptor obje
t; the Des
riptor has a diagram of its own, and the text below de�nes what

kind of a Des
riptor a DSS Des
riptor is (For instan
e, unlike a general Des
riptor, it
an't be an Array.)

All multiple sub
omponents are
onsidered to be ordered. In other words, there is a de�ned order of the
olumns

in a table, a de�ned order of header keywords in the header, and a de�ned order of the axes in an array. One may

refer to a
olumn by its name (e.g. TIME) or by its number (e.g. Column 4). A single Table Column may map

to several
olumns in an underlying table format (e.g. FITS BINTABLE), and in general the numbering of a Table

omponent is distin
t from the numbering of the
orresponding stru
ture in the underlying data format.

3.1 DM Table

The highest level obje
t is the DM blo
k. It
onsists of three main parts: the Table Data proper, the Header, and

the Data Subspa
e. Ea
h of these
ontains Data Cells made up of arrays of Components whi
h
ontain the a
tual

data, and Data Des
riptors whi
h provide metadata about the meaning of the Components.

The DM blo
k has a single attribute of its own: the table name.

4 Table Data Se
tion

4.1 Table Data

The Table Data Se
tion represents a table with r rows and

olumns. The interse
tion of a row and a
olumn is

a Data Cell; all the Data Cells in a
olumn have the same stru
ture, and
ontain the same type of data; they are

des
ribed by the Data Des
riptor for that
olumn. The di�erent
olumns in a row may have di�erent stru
tures.

Asso
iated with the Table Data se
tion is an ordered list of Preferred Columns, as a hint to generi
 software

whi
h only operates on a given number of
olumns without spe
ifying spe
i�

olumn names.

17

DATA SUBSPACE HEADER TABLE DATA

DSS

Component

TABLE ROW

Data Descriptor

DSS Data Descriptor
Column

Data Descriptor

Attribute

DSS

Data Cell

Attribute

Data Cell

Column

Data Cell

Element

Attribute

Element

Data

Element

DC

DA

DA DC
1

c

r

r
c

N
AN

H

ASC TABLE MODEL ASC TABLE

Name

DSS Region

DN

Figure 4: Data Model 1: Overall stru
ture of the data model, showing the ASC Table, used as the highest level data

obje
t en
apsulating all others.

18

4.2 Des
riptor

The Des
riptor obje
t is proved to des
ribe the stru
ture and properties of named quantities. It is basi
ally a

stru
ture whi
h provides a name, a unit and other des
riptive information, and spe
i�es a data type. It is the

abstra
tion of the FITS BINTABLE's TTYPEn, TUNITn, et
., header keywords for a
olumn.

The Des
riptor has:

� Name

� Unit

� Des
ription

� Data type

� Display format

� Element dimensionality d

� Element type t

� Array dimensionality n

� Array spe
i�
ation: dimensions n

1

:::n

n

grouped into Axis Groups, total number of values N = produ
t of the

n

i

.

� Component des
riptors

1

; :::

d

� Coordinate des
riptors C

1

; :::C

m

� Axis Group des
riptors

� Parent des
riptor

� Elements E(n

1

; :::n

N

)

� Kernel marker

19

DESCRIPTOR

Name Unit Description Data Type Display Format

Element dimension d
Element type t
Array dimension n
Array spec ni, gi

Component
Descriptors

ELEMENTS Coord
Descriptors

(X1,X2,...XN)

Axis Group
Descriptors

d N

N

n c

n g

Parent
DescriptorBLOCK

F
i
g
u
r
e
5
:
D
a
t
a
M
o
d
e
l
2
:
T
h
e
D
e
s

r
i
p
t
o
r
o
b
j
e

t
,
w
i
t
h
a
t
t
r
i
b
u
t
e
s
a
n
d
p
o
i
n
t
e
r
s
t
o
a
s
s
o

i
a
t
e
d
D
e
s

r
i
p
t
o
r
s
a
n
d
E
l
e
m
e
n
t
s
.

2
0

In more detail, the attributes are:

� The des
riptor name, a
hara
ter string. Any ASCII
hara
ter string shall be supported, but we re
ommend

that the string shall
onsist of only alphabeti
 upper or lower
ase letters a-z,A-Z; numeri
 digits, 0-9; the

symbols +,- and unders
ore (). In parti
ular, spa
es are not permitted (ex
ept trailing spa
es whi
h are

not
onsidered to be signi�
ant). Internally de�ned des
riptors in the DM use the leading
hara
ter #. At

this level,
ase is signi�
ant, although we anti
ipate that user a

ess routines will not be
ase-sensitive and

re
ommend that names be unique within a table even when
ase is ignored. The idea here is that we may want

to name something MaxVoltage instead of MAXVOLTAGE so that the software knows how to print it ni
ely,

but we don't want to require that the user has to get the
apitalization right when sear
hing for it. So
ase is

remembered, and returned
orre
tly, but mat
hes are
ase insensitive.

� The unit. A
hara
ter string whi
h spe
i�es the physi
al unit. Should
omply with the HEASARC/OGIP

format on unit strings or the JCMLIB spe
i�
ation for unit strings.

� The Des
ription is a string whi
h is used to label human readable output su
h as ASCII print �les and graphi
al

axis labels. It is a longer name whi
h may in
lude spa
es and other spe
ial
hara
ters, in
luding ba
kslash.

I suggest the use of TeX es
ape sequen
es whi
h are supported by some graphi
s libraries su
h as SM, for

instan
e `n alpha' for �. Thus a Des
riptor might have the name `RA' and the des
ription `n alpha (J2000.0)'.

� The Display Format indi
ates the preferred output format for a single data value asso
iated with the quantity in

a text browser. It is required that the Display Format
an be returned as a string Fortran format spe
i�
ation

ompatible with the TDISPn keyword in a FITS �le. This optional information may be provided as a hint

to browsers to let them format tabular output eÆ
iently. For instan
e, a quantity stored as a 4 byte integer

might be known to only take values less than 1000, allowing a display format of `I4' instead of the larger `I10'

needed by an arbitrary 4 byte integer. Pixel
oordinates might be displayed as `F8.3' while a time spe
i�
ation

in se
onds might require the greater pre
ision of `F20.6'. However, the display format may be absent or the

browser may
hoose not to use it, it's just provided to help make the output pretty.

� The Data Type indi
ates the type of data in an asso
iated Element. Supported data types shall in
lude:

{ Integer, 2 byte

{ Integer, 4 byte

{ IEEE Real, 4 byte. The spe
i�
ation of IEEE here indi
ates that it must be possible to return the data in

IEEE format, and it must be possible to store IEEE spe
ial values su
h as NaN and -Inf. How the data

are a
tually stored internally or in a data �le is an implementation detail.

{ IEEE Real, 8 byte

{ Logi
al, 1 byte

{ String, spe
i�ed �xed number of ASCII bytes s (Uni
ode is not
urrently supported).

{ Bit, 1 byte

{ Unsigned Byte, 1 byte

{ Unsigned Integer, 2 bytes

{ Unsigned Integer, 4 bytes

In addition, the following data types are under
onsideration for future support:

{ Extended Unsigned Integer, 8 bytes

{ Complex, 16 bytes

21

Table 1: Codes for Data Types

Data Type API routine suÆx FITS CFORM FITS TFORM

Integer/2 s 'I' 'I'

Integer/4 l 'J' 'J'

Real/4 f 'E' 'E'

Real/8 d 'D' 'D'

Logi
al q 'L' 'L'

String
 'A' 'A'

Unsigned/1 b 'B' 'B'

Unsigned/2 us 'U' 'I'

Unsigned/4 ul 'V' 'J'

� The Element Dimensionality spe
i�es the dimensionality d of all Elements asso
iated with this Des
riptor. The

default is d = 1.

� The Element Type
an be Value (V); Value with Un
ertainty (U), Value with Fixed Un
ertainty (UF), 2D

Region (REG), Bin (BF), Bin Start (SF), et
. The di�erent element types are dis
ussed in full in the se
tion

on elements. All Elements asso
iated with the Des
riptor must be of the same Element Type. Element types

are newly supported in DM2.0.

� A Kernel marker. This is a pla
eholder to support extra information needed to re
onstitute a
lean �le for a

parti
ular kernel.

� Array Dimensionality n spe
i�es the dimensionality of the array of Elements making up a single Cell asso
iated

with the Des
riptor. If n > 0, there must be an Array Spe
i�
ation asso
iated with the Des
riptor; if n = 0 there

is no Array Spe
i�
ation. All Cells asso
iated with the Des
riptor must have the same array dimensionality

and array spe
i�
ation.

� If d > 1, there are a set of d Components. For instan
e, we might de�ne a 2-dimensional Des
riptor with name

SKYPOS and
omponent names RA and De
. If d = 1 then the single
omponent is de�ned to be identi
al

with the Des
riptor.

We name
ertain spe
ial
ases:

� { A Des
riptor with d = 1 and n = 0 is known as a S
alar Des
riptor.

{ A Des
riptor with d > 1 and n = 0 is a Ve
tor Des
riptor.

{ A Des
riptor with d = 1 and n > 0 is a S
alar Array Des
riptor.

{ A Des
riptor with d > 1 and n > 0 is a Ve
tor Array Des
riptor.

� Finally, a des
riptor may have a Comment �eld. This Comment �eld
onsists of arbitrarily many 72-byte text

strings ea
h with an asso
iated 8-byte tag. The default value of the tag is the string 'COMMENT'. Other

values of the tag are not guaranteed to produ
e valid �les for all kernels, although 'HISTORY' and blank are

valid for FITS �les. The Comment �eld text may appear in the underlying �le header anywhere following the

appearan
e of the des
riptor name and pre
eding the next des
riptor name.

22

4.3 Array Dimensions

An Array Dimensions spe
i�
ation des
ribes the arrangement of a set of N elements into an n-dimensional array.

The n axes of this array, i = 1; :::n, have dimension (size) n

i

, so that

Y

i=1;n

n

i

= N

The elements E(p

1

; :::p

n

) of the array are labelled by array pixel numbers, whi
h are an ordered n-tuple P =

(p

1

; :::p

n

).

4.4 Array Axis

Ea
h axis i of the array is de�ned by a given dimension (size, number of pixels) n

i

. We adopt the FITS (and Fortran)

onvention in whi
h the pixel numbers start at one, and in whi
h a default storage order is implied in the following

sense: an Element Number e is de�ned equal to

e(P) = p

n

+ (p

n�1

� 1) � n

n

+ ((p

n�2

� 1) � n

n

n

n�1

+ :::

or

e(P) =

n

X

i=1

0

�

(p

i

� 1)

n

Y

j=i+1

n

j

1

A

where

Q

n

j=n+1

n

j

in the �nal term of the sum is interpreted to be equal to one. A me
hanism will be supplied

to return the elements in element number order. In FITS �les and in Fortran arrays, the array elements must be

a
tually stored in element number order.

4.5 Axis Groups

We add a little extra stru
ture to the array to group axes whi
h may have
ommon
oordinate transforms. Axis

Groups are to image axes as Ve
tor Des
riptors are to table
olumns. In our model we
onsider something like

dete
tor pixel position to be a single, two-dimensional, Des
riptor; if we have a data
ube of dete
tor pixel position

DETX, DETY versus energy E we wish to emphasize the fa
t that DETX and DETY are related to ea
h other in

a way that they are not related to E. In this view, the three dimensional data
ube DETX,DETY,E is instead a

two dimensional array with two axes DETPOS and E, in whi
h the �rst axis is itself two-dimensional. This �rst,

two-dimensional axis may have a
oordinate system on it whi
h applies a two-dimensional spheri
al rotation, or it

may have a mask on it whi
h spe
i�es a two-dimensional region, in ea
h
ase requiring that treatment of DETX and

DETY be
oupled. In
ontrast, we do not expe
t to get situations where we must treat DETX and E in a
oupled

way (if we do, they will have to be treated at a higher level).

The Array Dimensions spe
i�
ation adds the
on
ept of Axis Groups. In the example above, the three dimensional

array has two axis groups, one a two-dimensional axis group
ontaining the �rst two axes and another one-dimensional

axis group
ontaining the third. We
an label the array by axis group pixel numbers P

G

= ((p

1

; p

2

); p

3

), an ordered

pair of a two-dimensional dete
tor position pixel and an energy bin.

Say there are g axis groups ea
h of dimensionality g

m

;m = 1; :::g. We have

X

m

g

m

= n:

23

4.6 Parent Des
riptor

If the Des
riptor is a
omponent Des
riptor, an Axis Group or Coordinate Des
riptor, et
., it has a parent - another

des
riptor whi
h refers to it. A raw table
olumn may have no parent des
riptor; �ltered table
olumns point ba
k

to the raw
olumn.

4.7 Coordinate Transform Des
riptor

The Elements of a Coordinate Des
riptor are de�ned impli
itly by mapping the Elements asso
iated with another

Des
riptor using a Coordinate Transform. A simple example is the mapping of mission time TIME in se
onds to

Julian Date JD in days. We de�ne this transformation by
hoosing a referen
e value of TIME (usually 0.0) and

the
orresponding referen
e value of JD (the JD when TIME is equal to 0.0; say 2445200.0), and de�ning the

transformation relative to this referen
e value. If TIME is the
orre
t time in se
onds sin
e the referen
e value,

then the transformation type is LINEAR and the transformation s
ale is 1.0/86400.0 (the number of days in a

se
ond); this
ompletely determines the transformation. If TIME is a spa
e
raft
lo
k with glit
hes and resets, the

transformation may be a lookup table or a polynomial with a more
ompli
ated de�nition. Lookup transforms are

not yet implemented in the DM.

In general, we
onsider a
oordinate transform to link two Des
riptors whi
h have the same Element Dimension-

ality d. One Des
riptor is referred to as the Parent or Pixel Des
riptor and one as the Coordinate Des
riptor (this

does not ne
essarily imply that the Pixel Des
riptor has units of pixels; the names evoke the FITS keywords CRPIX

and CRVAL). The transform
onsists of a Coordinate Transform Spe
i�
ation whi
h has a Transform Type, a set

of d Transform S
ales �

i

(i = 1; ::d), and asso
iated Transform Parameters spe
i�
 to the transform type. It also

has a Referen
e Pixel Element and a Referen
e Coordinate Element, whi
h are Value Elements (Elements of type V,

see below)
orresponding to the Pixel and Coordinate des
riptors. In our example above, the Pixel and Coordinate

Des
riptors are TIME and JD, and the Pixel and Coordinate Elements have values 0.0 and 2445200.0.

The point here is that we
hoose to represent an arbitrary transformation by a lo
al linear transform about

a referen
e point, plus higher order
orre
tions. This has three advantages: it maps dire
tly to the FITS CR-

PIX/CRVAL/CDELT
onvention; it ensures that we have a de�ned `
enter' for our transformation, whi
h
an be

used as a default lo
ation by an appli
ation; and often the transformations we use are linear, and don't require any

higher order parameters, so it makes the usual
ases simple.

24

Name Unit Description Data Type Display Format

Element dimension d
Element type t
Array dimension n
Array spec ni, gi

Component
Descriptors

ELEMENTS Coord
Descriptors

d N

N

n c

Parent
DescriptorBLOCK

DESCRIPTOR

COORDINATE

(If main DD is an axis group)
(Equation defining
coordinate transform)

Used to get pixel values for coord transform

= 1
= 1, 1, 1

= 1 or 2

= Value

(which are also coord
descriptors)

(A coord descriptor
cannot have axis groups since
its array dimension is always 1)

F
i
g
u
r
e
6
:
D
a
t
a
M
o
d
e
l
3
:
U
s
e
o
f
t
h
e
C
o
o
r
d
i
n
a
t
e
T
r
a
n
s
f
o
r
m

2
5

Name Unit Description Data Type Display Format

Element dimension d
Element type t
Array dimension n
Array spec ni, gi

Component
Descriptors

ELEMENTS Coord
Descriptors

d N

N

n c

Parent
Descriptor

DESCRIPTOR

= 1
= 1, 1, 1

= 1 or 2
cannot have axis groups since
its array dimension is always 1)

FILTER

Filter descriptors

(not supported yet)
Range and region data
Range for 1D
Region for 2D

Range

Parent is the corresponding column
descriptor if there is one

BLOCK

Subspace

(Also filters)

F
i
g
u
r
e
7
:
D
a
t
a
M
o
d
e
l
3
b
:
F
i
l
t
e
r
D
e
s

r
i
p
t
o
r
s

2
6

4.8 Column Data Des
riptor

A Data Des
riptor provides information about a Des
riptor whi
h we're going to provide values for. The simplest,

minimal Data Des
riptor is a Data Des
riptor whi
h is a s
alar Des
riptor. More
ompli
ated Data Des
riptors

provide support for ve
tor Des
riptors, for Arrays (a Des
riptor with an Array Spe
i�
ation), and for asso
iated

oordinate and axis des
riptors.

Every Data Des
riptor has a single Data Des
riptor. A Data Des
riptor whose Data Des
riptor is a Ve
tor Array

Des
riptor is
alled a Ve
tor Array Des
riptor, and so on. If the Data Des
riptor is an Array Des
riptor (n > 0) then

there is an asso
iated Array Spe
i�
ation with Axis Groups and Axes. A S
alar Data Des
riptor in a Column Data

Des
riptor is the abstra
tion of the FITS keywords TTYPEn, TFORMn, TUNITn, et
. An Array Data Des
riptor

orresponds to the FITS BINTABLE multidimensional array
onvention for TFORM values. Ve
tor Data Des
riptors

do not
orrespond to any existing
onvention in FITS.

Asso
iated with the Data Des
riptor there may be a Data Coordinate Des
riptor linked to it by a Data Coordinate

Transform. For instan
e, a table may have a
olumn TIME with values in
luded expli
itly in the table
ells. The

TIME
olumn may have asso
iated with it a Des
riptor JD whi
h gives the Julian Date. The individual values of

JD are not stored expli
itly, but are implied by the JD to TIME
oordinate transform. JD is a Data Coordinate

Des
riptor asso
iated with the Data Des
riptor TIME. The Data Coordinate Des
riptor and Transform are the

abstra
tions of the FITS keywords TCTYPn and TCRVLn, TCRPXn, et
.

A Column Data Des
riptor with a Data Des
riptor whi
h is an Array has an Array Spe
i�
ation with one or more

Axis Groups. Ea
h Axis Group may have an asso
iated Axis Group Des
riptor, related to it by a
oordinate transform

alled a Pixel Coordinate Transform whi
h must be of transform type LINEAR. The Axis Group Des
riptors are the

labels of the axes of the array. For instan
e, we may have a Data Des
riptor PSF whi
h is a three dimensional array

with axis groups g

1

= 2 and g

2

= 1, asso
iated with Axis Group Des
riptors DETPOS (d = 2,
omponent names

DETX and DETY) and ENERGY (d = 1). The element dimensionality of the Axis Group Des
riptor must be the

same as the dimensionality of the Axis Group.

Further, the Axis Group Des
riptors may themselves have asso
iated Axis Group Coordinate Des
riptors related

to them by Axis Group Coordinate Transforms. Consider another example in whi
h the Array has n = 2; g = 1; g

1

= 2

and the single Axis Group Des
riptor is SKYPOS with
omponents X and Y representing the X,Y sky pixel
oordinate

positions. We may asso
iate with it an Axis Group Coordinate Des
riptor EQPOS with
omponents RA and DEC,

linked by a
oordinate transform of type TAN, representing the a
tual equatorial sky positions. The Axis Group

Coordinate Des
riptors are the abstra
tions of CTYPEn in a FITS image, while the la
k of support for Axis Group

Quantites themselves (su
h as SKYPOS X,Y) is an unfortunate limitation of
urrent FITS pra
ti
e.

4.9 Interval type

An Interval de�nes a
ontiguous subset of the data values of the appropriate data type. Intervals are only meaningful

for data types where a well de�ned ordering of the data values exists. For integer and real types this is the usual

ordering; for string types this is de�ned to be the ASCII ordering.

The most general Interval is a minimum value, a maximum value, and an interval type. Possible interval types

are
losed, open, semi-open lower, and semi-open upper, denoted as [a:b℄, (a:b), (a:b℄, and [a:b) respe
tively. These

are de�ned as:

x 2 [a : b℄ , a � x � b

x 2 (a : b) , a < x < b

x 2 (a : b℄ , a < x � b

x 2 [a : b) , a � x < b

The semi-open intervals are useful for ensuring that boundary values are not
ounted twi
e. For integer and string

data types, the only possible type of interval is Closed. This is also the default interval type for real data types.

27

In the DM2.0 design, Intervals are assumed to be [a:b) in all real
ases and [a:b℄ in all integer
ases. Adding

support for expli
it
ontrol of interval type is under
onsideration.

4.10 Elements

The a
tual data for the table is stored in Elements. An Element must be asso
iated with a Des
riptor. A single

Element
ontains values for one instan
e of the Des
riptor. For example, if the Des
riptor TIME has element type

Value with Un
ertainty (VU) and element dimensionality 2, with
omponents TIME and TIME UNC, then an

Element asso
iated with TIME has one value of the TIME and one value for TIME UNC. If the Des
riptor DET

has element type Value (V) and element dimensionality 2, then a single Element of DET has two Value Elements.

The simplest kind of element is an element of type Value and dimensionality 1, whi
h is a single value (numeri
 or

string a

ording to the asso
iated Des
riptor's data type.)

The spe
ial element type REG applies only to 2-dimensional elements and is a string de�ning a region in PROS

Regions syntax. With the ex
eption of this element type, all d-dimensional elements
onsist of un
oupled element

omponents for ea
h of the d dimensions. The most general element
omponent is a Value plus its Un
ertainties or

Ranges.

Eventually, we propose to support three di�erent un
ertainties: statisti
al, systemati
 zero point, and systemati

s
ale. In addition, we de�ne a total un
ertainty whi
h is a fun
tion of these three. We also use the same paradigm

to re
ord bin ranges. Our approa
h is to treat the systemati
 un
ertainties as separate add-ons, with our default de-

s
ription being a single value and un
ertainty, whi
h is to be interpreted as a statisti
al un
ertainty if the systemati
s

are present and as a total un
ertainty if they are not.

� If no un
ertainty at all is present, the
ode is V (Value).

� The most
exible representation is the Interval Un
ertainty (I) whi
h uses an Interval to de�ne the minimum

and maximum values within the signi�
an
e range. If the minimum value is zero or less, the measurement is

termed an upper limit. If the Value
omponent has value v, and the Interval has min and max of v

1

and v

2

,

then for a
losed interval type

v

1

� v � v

2

:

Note than the range
enter (v

1

+ v

2

)=2 is not ne
essarily equal to v.

� A se
ond, more
ommon representation is the Two Sided Un
ertainty (T), in whi
h the o�sets �

+

; �

�

from the

nominal value are given. This has the advantage that it may be often used as a Fixed Un
ertainty. In terms

of the Interval Un
ertainty,

v

1

= v� = �

�

; v

2

= v + �

+

:

� The One Sided Un
ertainty (U) is the same as the two sided, but both upper and lower un
ertainties are equal.

v

1

= v � �; v

2

= v + �:

� The Bin (B) is the same as the one sided un
ertainty, but the full bin width w rather than the half bin width �

is given. This is more usually employed when the interpretation is a binned dataset rather than an un
ertainty.

v

1

= v � w=2; v

2

= v + w=2:

� The Bin Start (S) is the same as the Bin, but the Value is deemed to be the start of the bin rather than the

enter:

v

1

= v; v

2

= v + w:

This representation is often used for light
urves.

28

� The Range (R) is the same as the Interval Un
ertainty but there is no asso
iated Value. If a Value is required,

it is assumed to be v = (v

1

+ v

2

)=2.

� The s
ale un
ertainty is always represented as a single nonnegative dimensionless real value (K) so that the

implied range around the value v is

v

1

= v(1�K); v

2

= v(1 +K):

� We also want to support a two sided s
ale (L) with di�erent upper and lower s
ale errors, whi
h arises when

we take the logarithm of a Des
riptor with di�erent upper and lower un
ertainties.

� Finally, sometimes data is just provided in the form of dete
tions and upper limits. We de�ne an element type

Z whi
h
onsists of a value v

d

and a limit
ag f , with the meaning

iffthenv = v

d

elsev

1

= 0; v

2

= v

d

:

However, I don't propose that we support this element type initially.

Ea
h of these range types
an be Fixed, in whi
h
ase we append the letter F to the element type. We will further

require that elements in a Table Column have a �xed Interval Type for all
ells of the
olumn.

ELEMENT

Element Type
Element dimensionality d

Element type

2D Region
Element Component

d
1

Element type

V KI R B S T U

Value Value

Min

Max

Min

Max Value

Width

Value

Width

Value

Upper

Lower

Value

Unc

Interval type

Value

Scale Unc

Value

Upper sc

Lower sc

L

Spec String

Value Interval Range Bin Bin
Start

Two sided
Unc.

One sided

Unc.

One sided
scale.

Two sided
scale.

Figure 8: Data Model 5: The Element obje
t, used to store the a
tual values. There may be many elements des
ribed

by a single Des
riptor. There is one Element
omponent for ea
h dimension of the element, ex
ept if systemati

un
ertainties are in
luded in whi
h
ase there may be up to three Element
omponents for ea
h dimension.

29

We will later add to the Des
riptor obje
t a systemati
 zero point un
ertainty type and a systemati
 s
ale

un
ertainty type, the default values of whi
h are null (not present). The legal values are the same as for the Element

type, and if they are present the usual values are UF for the zero point un
ertainty and KF for the s
ale un
ertainty.

4.11 Region Des
ription

For the two dimensional region des
riptions we would like to support those in
urrent systems, namely:

� Bitmap: appropriate for a binned dataset, provides a list of the pixels in the region.

� Polygon: an ordered list of n points des
ribing a
losed polygonal region.

� Shape: A parameterized shape, in
luding the
ases Cir
le, Annulus, Ellipse, Box, Pie.

Bitmaps are not yet supported.

We
an des
ribe the Shape with the following parameters:

� Shape type: ellipti
al or re
tangular.

� Shape
enter x0, y0.

� Shape radial range r1, r2, interval type. If r1=0, have a Cir
le or Box. If r1>0, have an Annulus or annular

box.

� Aspe
t ratio a, ratio of major to minor axis. If a=1 have a
ir
le or square; if a<1 have an ellipse or re
tangle.

� Shape orientation theta0; measures angle between major axis and x axis. Irrelevant if a=1.

� Shape azimuthal range theta1, theta2, interval type. The default is theta1=0 and theta2=360 deg. Any other

value gives you a pie or se
tor (for shape type ellipti
al; shape type re
tangular may not support se
tors).

4.12 Table Data Cell

A Data Cell is asso
iated with a Data Des
riptor and
ontains one set of Elements for that Data Des
riptor. The

number of elements in the
ell is equal to the number of elements in the array spe
i�
ation for the data des
riptor;

in parti
ular, if there is no array spe
i�
ation (data Des
riptor array dimensionality equal to zero) there is exa
tly

one element in the
ell. The elements in the
ell
an be a

essed via pixel number or element number as dis
ussed

in the se
tion on array spe
i�
ations and axes.

4.13 Table Row

In a Table Data se
tion, there is some spe
i�ed number r of Table Rows. Ea
h Row may be thought of as
ontaining

one Data Cell for ea
h of the Column Data Des
riptors. More pre
isely, there is one Data Cell asso
iated with ea
h

ombination of row and
olumn.

4.14 Des
riptor Groups

A des
riptor group is a simple obje
t with a name and an array of des
riptor pointers. It allows users to manipulate

and refer to related
olle
tions of des
riptors. API and kernel routines will be provided to de�ne and a

ess su
h

des
riptor groups.

30

5 Data Subspa
e

5.1 Introdu
tion

What distinguishes a photon event list from a table in an ordinary database? The rows of the event list represent

individual, asyn
hronous events. They
annot be interpreted without knowing the �lter through whi
h those events

were sele
ted. Suppose we dete
t photons only between times 100 and 200. Is this be
ause the sour
e
ared during

that time, or be
ause the satellite was only looking during that time period? To be more pre
ise, if you just have

an ordinary table of rows, what you are missing is the information about what rows would NOT have been allowed

in the table - in the photon event list
ase, whi
h events would NOT have been dete
ted. We are then led to the

on
ept of the data subspa
e: in the spa
e of all possible data, what subspa
e is being sampled by the
urrent table?

This idea is
losely
onne
ted with the idea of �ltering. The data subspa
e is simply the �lter that has been

applied to the data. However, we're not just talking about user �lters applied during pro
essing, but also impli
it

�lters applied by the a
t of observation at a parti
ular time with a parti
ular instrument. If the user then �lters the

data further, the new data subspa
e is simply the interse
tion of the �lter with the old subspa
e.

If two datasets are merged, the new data subspa
e is the union of the old ones. In this
ase, however, we lose

some information: the data subspa
e paradigm doesn't retain information about whi
h of the original subspa
es a

parti
ular row belonged to. This is the usual problem with binning data together, whi
h we
an illustrate with a

familiar example:
ombining two pulse height spe
tra. Suppose we have two event lists E1 and E2 with the following

data, representing events from two di�erent ACIS
hips whi
h are distinguished by di�erent ranges of dete
tor

position DETPOS:

E1 subspa
e: DETPOS=[0:1024,0:1024℄

E1 table:

DETPOS PHA TIME

100 245 8 4922.2

231 928 17 4812.5

....

E2 subspa
e: DETPOS=[1024:2048,0:1024℄

E2 table:

DETPOS PHA TIME

1241 621 22 4924.3

1782 212 7 4092.2

...

If we extra
t two PHA histograms P1 and P2, retaining only pulse heights from 2 to 100 and sele
ting a region

near the boundary of the
hips where we think there is a sour
e, we get:

P1 subspa
e: DETPOS=[1000:1024,800:825℄, PHA=[2:100℄

P1 table:

PHA COUNTS

2 0

3 4

....

100 1

P2 subspa
e: DETPOS=[1024:1124,800:825℄, PHA=[2:100℄

P2 table:

31

PHA COUNTS

2 1

3 2

...

If we then merge these two datasets to form P3, we get:

P3 subspa
e: DETPOS=[1000:1124,800:825℄, PHA=[2:100℄

P3 table:

PHA COUNTS

2 1

3 6

....

A tool to build the XSPEC response matrix would then
he
k the DETPOS region to see whi
h
hips were

involved. In the
ase of P3, it would see that 20 per
ent of the region was on one
hip and 80 per
ent on the other,

and would average the two response matri
es in that proportion. We have lost any information about whi
h
ounts

ame from whi
h
hip. If instead we merge the lists E1 and E2 to form a new event list whi
h retains the DETPOS

olumn, and then �lter on position and PHA but don't bin to make the histograms, we get E3:

E3 subspa
e: DETPOS=[1000:1124,800:825℄, PHA=[2:100℄

E3 table:

DETPOS PHA

1012 814 8

1182 803 18

...

although the data subspa
e is the same as for P3, the information about whi
h
hip is involved for a given event

is still available via the DETPOS value for the given event.

In general, any tabular data may have a data subspa
e whi
h des
ribes the range of data for whi
h the table

applies. The des
riptors in the data subspa
e are not ne
essarily the same as the des
riptors in the table itself - see

the example of P3 above in whi
h DETPOS is in the data subspa
e but not in the table.

5.2 Unions of subspa
es

A more
ompli
ated
ase of merging subspa
es is when we wish to use `in
ompatible' �lters. For example, perhaps

the se
ond
hip has unreliable data in PHA
hannels 2 to 10, so we want to apply a di�erent PHA �lter to it. We

�lter E1 and E2 with di�erent �lters and then merge them to make E4:

E4 subspa
e:

Component 1: DETPOS=[1000:1024,800:825℄, PHA=[2:100℄

Component 2: DETPOS=[1024:1124,800:825℄, PHA=[11:100℄

E4 table:

DETPOS PHA

1012 814 8

1182 803 18

...

When two �lters (subspa
es) are unioned (logi
al OR), we des
ribe them as di�erent `
omponents' of the subspa
e.

What if the di�erent �lters involve �ltering on entirely di�erent quantities? Consider the
ase when E1 is �ltered

on PHA and E2 is �ltered on TIME.

32

E5 subspa
e:

Component 1: DETPOS=[1000:1024,800:825℄, PHA=[2:100℄

Component 2: DETPOS=[1024:1124,800:825℄, TIME=[4823.2:4890.1),[5012.4,5100.0)

E5 table:

DETPOS PHA TIME

1012 814 8 4902.54

1182 803 18 4823.80

...

To simplify the treatment, we note that we
an make the quantities involved in the two
omponents the same by

adding the trivial �lters TIME=[�1 :1℄ and PHA=[�1 :1℄ to
omponents 1 and 2 respe
tively. Doing this lets

us store a single list of the des
riptors involved in a data subspa
e, instead of requiring us to maintain separate lists

for ea
h
omponent.

5.3 General de�nition

1. A Data Subspa
e (DSS) D
onsists ofDC = 0+ Data Subspa
e Components (DSS Components) C(i); i = 1; DC

and a list of DA = 0+ Data Subspa
e Data Des
riptors or Data Subspa
e Axis Groups A(j); j = 1; DA. (Note:

The notation n

C

= 0+ means that there are zero or more of the entities in question, and that the number of

entities will be denoted by DA.) There is usually only one DSS Component in a DSS, i.e. DC=1. The name

Axis Group re
e
ts the fa
t that the data subspa
e
ould be represented by an array with those axis groups

(although the pixel values of that array are not de�ned).

2. A Data Subspa
e Data Des
riptor or Data Subspa
e Axis Group is a named obje
t whi
h has the same

properties as the generi
 Data Des
riptor de�ned above, parti
ularly in
luding a name and a dimensionality.

An example of a data subspa
e axis group might be TIME, or POSITION. However, a Data Subspa
e Data

Des
riptor may not have asso
iated array Axis Group Des
riptors, or array Axis Group Coordinate Des
riptors.

Further, it must have array dimensionality 1. An important distin
tion between the DD for Table Data and

the DD for a Data Subspa
e is that the array dimension n

1

is to be interpreted as the maximum dimension

for any data
ell, rather than the a
tual dimension for ea
h data
ell (see below). However, the Data Subspa
e

Data Des
riptor is allowed to have a Data Coordinate Transform and a Data Coordinate Des
riptor.

3. A Data Subspa
e Component C(i)
onsists of DA DSS Data Cells RV (i; j), one for ea
h axis group of the

parent data subspa
e.

4. The Data Cells of a data subspa
e
omponent
onsist of n

R

= 0+ Region ElementsR(i; j; k); k = 1; n

R

(i; j). An

example of su
h a Data Cell is a set of Good Time Intervals, or a spatial mask
onsisting of several
omponents.

The di�erent Data Cells
orresponding to di�erent DSS Components may have di�erent values of n

R

, unlike

the Data Cells for di�erent rows of a Table Data se
tion whi
h must all have the same array sizes. Sin
e there

is usually only one DSS
omponent, this doesn't usually matter.

5. A Data Cell may be de�ned impli
itly as a World Coordinate Data Cell. For instan
e, if the Data Subspa
e Axis

Group is pixel sky
oordinate position SKYPOS (X,Y), and this has a Data Coordinate Des
riptor EQPOS

(RA,DEC) related to it by a Data Coordinate Transform, then we may express the Data Cell as a set of region

elements atta
hed to EQPOS (the Data Coordinate Des
riptor) rather than SKYPOS (the Data Des
riptor) -

say, a
ir
le expressed as `(
 14:04:11 -00:23:12 6.2')', i.e. a 6.2 ar
min
ir
le around the spe
i�ed sexagesimal

RA and De
, instead of `(
 4212.2 5123.2 42.1)' in pixels. I haven't in
luded this expli
tly in the diagrams; in

the FITS implementation I have suggested parallel keywords DSn and DSCn for regions expressed in the pixel

and world systems respe
tively.

33

6. A Region Element R(i; j; k) in a data subspa
e data
ell is a range element if the dimensionality of the
orre-

sponding Data Subspa
e Axis Group is 1, and is a 2D Region Element in the dimensionality of the
orresponding

Data Subspa
e Axis Group is 2.

From a set-theory point of view,

RV (i; j) = [

k

R(i; j; k)

and

C(i) = \

j

RV (i; j)

and

D = [

i

C(i) =

[

i

0

�

\

j

([

k

R(i; j; k))

1

A

34

Data Subspace

A1

A2

A3

R111 R112

R121

R131
R131

R121

R211

R221

R231

C1 C1

C2

RV11

Figure 9: Illustration of a data subspa
e.

35

7. A data point P,
onsisting of values V

j

, j = 1; DA, is said to be `in' the data subspa
e if it is in any one of the

omponents. It is in a
omponent if it is in all of that
omponent's data
ells. It is in a data
ell if it is in any

of the data
ell's region elements.

8. The interse
tion of two data subspa
es D

1

and D

2

is
al
ulated as follows: First extend the lists of axis groups

of ea
h subspa
e to be the same. Then

D

1

\D

2

=

[

i

0

�

\

j

([

k

R

1

(i; j; k))

1

A

\

[

m

0

�

\

j

([

n

R

2

(m; j; n))

1

A

or

D

1

\D

2

=

[

i

[

m

0

�

\

j

�

[

k

[

n

R

1

(i; j; k)R

2

(m; j; n)

�

1

A

The
ase of a single point
an be understood as a spe
ial
ase of this. Consider the value
omponents V

j

as

losed zero-length ranges [V

j

: V

j

℄; then P is a data subspa
e with one
omponent and R(i; j; k) = [V

j

: V

j

℄.

The above formula tells us to interse
t ea
h
omponent with the
orresponding range.

Examples of interse
tion of data subspa
es: First, let's take the point
ase. Let the data subspa
e be that of E5

above:

Component 1: DETPOS=[1000:1024,800:825℄, PHA=[2:100℄, TIME=[:℄

Component 2: DETPOS=[1024:1124,800:825℄, PHA=[:℄, TIME=[4823.2:4890.1),[5012.4,5100.0)

Then let P be the point (DETPOS,PHA,TIME)=((1100,812),200,5050). We have:

A(1) = DETPOS

A(2) = PHA

A(3) = TIME

R(1,1,1) = Box 1000:1024, 800:825

R(1,2,1) = [2:100℄

R(1,3,1) = [:℄

R(2,1,1) = Box 1024:1124, 800:825

R(2,2,1) = [:℄

R(2,3,1) = [4823.2,4890.1)

R(2,3,2) = [5012.4,5100.0)

V(1) = (1100,812)

V(2) = 200

V(3) = 5050

So �rst we interse
t P with
omponent 1. The interse
tion is null, sin
e V(1) has no overlap with R(1,1,1) and

V(2) has no overlap with R(1,2,1). Next we interse
t with
omponent 2. The interse
tion of V(1) with R(2,1,1) is

V(1) itself; similarly for V(2). V(3) is outside R(2,3,1) but inside R(2,3,2) and thus inside their union as required.

So the interse
tion of P with
omponent 2 of the subspa
e is P itself. Thus, P is inside the subspa
e.

Now let's take the interse
tion of two �lters. Let the se
ond spa
e be a simple time �lter with two intervals,

TIME=[4000:4800℄,[6000:7000℄. To do the interse
tion we add the missing axes:

R(1,1,1)=[:,:℄

R(1,2,1)=[:℄

R(1,3,1)=[4000:4800℄

R(1,3,2)=[6000:7000℄

36

Then evaluating the interse
tion equation gives the expe
ted result:

A(1) = DETPOS

A(2) = PHA

A(3) = TIME

R(1,1,1) = Box 1000:1024, 800:825

R(1,2,1) = [2:100℄

R(1,3,1) = [4000:4900℄

R(1,3,2) = [6000:7000℄

R(2,1,1) = Box 1024:1124, 800:825

R(2,2,1) = [:℄

R(2,3,1) = [4823.2,4800.0℄

Note that the se
ond element of the TIME region ve
tor in
omponent 2 has disappeared, sin
e it had no overlap

with the new �lter. The interval type of the �rst element has
hanged, it is now a
losed interval. If the �lter had

been [4000:4700℄, the entire se
ond
omponent would have been removed.

6 Header

The ASC Table Header
ontains metadata analogous to FITS header keywords. We allow ASC header attributes to

have all the properties of a Des
riptor, in
ontrast to FITS header keywords whi
h do not have the full properties of

a FITS table
olumn.

6.1 Key Data Des
riptor

A Key Data Des
riptor has the same stru
ture as a Table Column Data Des
riptor. However, in the
urrent

implementation we will not support array dimensionality greater than 1 or axis group des
riptors (
f. DSS Data

Des
riptor).

37

6.2 Grouping Des
riptors

A new feature of the design is the idea of grouping des
riptors. A group is a
olle
tion of related des
riptors; its

purpose is to allow software to display and sele
t related information together.

By default, a blo
k has only one group, the default group. It may have arbitrarily many named groups whi
h

olle
t together key,
olumn,
oordinate and �lter des
riptors. For instan
e, a 'time' group might in
lude various

timing keywords and the TIME table
olumn. A group is NOT itself a kind of des
riptor, and in parti
ular group

names do not need to be distin
t from des
riptor names.

Keys may be related to other `parent' data des
riptors, either other attributes or
olumns or data subspa
e axis

des
riptors. Attributes that are related to
olumns are
alled
olumn attributes. Attributes that are related to data

subspa
e axes are
alled data subspa
e attributes. All other attributes are table attributes. A generi
 FITS header

keyword is a table attribute; the idea of tying header keywords to parti
ular
olumns is new. A table attribute whi
h

is related to another table attribute may be
onsidered as part of a group (equivalen
e
lass) of table attributes; this

allows us to group header keywords and refer to them by groups rather than individually.

7 DM Images

7.1 Images and Tables

A DM Image is an DM Table with a single Table Column Data Des
riptor whose array dimensionality n > 0 and

with a single Row. Spe
ial a

ess routines are provided for DM Images. Any single array Data Cell in a table may

also be treated as a DM Image; to instantiate it as su
h an image,
opy it to a new DM table together with the DSS,

the Table Attributes, as well as the Data Des
riptor and Column Attributes for its own Column, but dis
arding the

other rows for the
olumn and dis
arding the other
olumn data des
riptors,
ells, and
olumn attributes.

I illustrate the stru
ture of an DM Image in the a

ompanying diagram; note that from the OO point of view

this is just an instan
e of the DM Table, not a separate model.

8 Case studies and examples

8.1 FITS
ase study: PSPC o� axis histogram �le

An ASCII dump of a Rosat PSPC FITS �le for the o� axis histogram for an extra
ted sour
e is reprodu
ed below;

I then interpret it in terms of the data model.

XTENSION= 'BINTABLE' / binary table extension

BITPIX = 8 / 8-bit bytes

NAXIS = 2 / 2-dimensional binary table

NAXIS1 = 8 / width of table in bytes

NAXIS2 = 14 / number of rows in table

PCOUNT = 0 / size of spe
ial data area

GCOUNT = 1 / one data group (required keyword)

TFIELDS = 2 / number of fields in ea
h row

TTYPE1 = 'OFF_AX_RAD' / Off-axis grid point for histogram bin (ar
min)

TFORM1 = '1E ' / data format of the field: 4-byte REAL

TUNIT1 = 'ar
min ' / physi
al unit of field

TTYPE2 = 'FRAC_TIME' / Fra
tion of time spent by sour
e in bin

TFORM2 = '1E ' / data format of the field: 4-byte REAL

TUNIT2 = 'NONE ' / physi
al unit of field

EXTNAME = 'OAH005 ' / Dete
t extension-asp histogram for given sour
e

38

DATA SUBSPACE HEADER

DSS

Component

Data Descriptor

DSS Data Descriptor

Data Descriptor

Attribute

DSS

Data Cell

Attribute

Data Cell Data Cell

Element

Attribute

Element

Data

Element

DC

DA

DA DC

1

1 r

N
AN

H

Name

DSS Region

ASC Image

IMAGE DATA

Image

Image

Figure 10: Data Model 7: DM Image Model, identi
al to Table Model but without Table Row and with only one

Column Des
riptor (Image Des
riptor).

CONTENT = 'SOURCE ' / data
ontent of file

ORIGIN = 'USRSDC ' / origin of pro
essed data

DATE = '13/07/94' / FITS
reation date (DD/MM/YY)

TELESCOP= 'ROSAT ' / mission name

INSTRUME= 'PSPCC ' / instrument name

OBS_MODE= 'POINTING' / obs mode: POINTING,SLEW, OR SCAN

IRAFNAME= 'rp110590n00_oah005.tab' / IRAF file name

MJDREFI = 48043 / MJD integer SC
lo
k start

MJDREFF = 8.79745370370074E-01 / MJD fra
tion SC
lo
k start

ZERODATE= '01/06/90' / UT date of SC start (DD/MM/YY)

ZEROTIME= '21:06:50' / UT time of SC start (HH:MM:SS)

RDF_VERS= '2.9 ' / Rationalized Data Format release version number

RDF_DATE= '13-JUL-1994' / Rationalized Data Format release date

PROC_SYS= 'SASS7_2_0' / Pro
essing system

PROCDATE= '2-JUN-1994 11:20:34' / SASS SEQ pro
essing start date

REVISION= 2 / Revision number of pro
essed data

FILTER = 'NONE ' / filter id: NONE OR BORON

OBJECT = 'XRT/PSPC PSF AR LAC' / name of obje
t

RA_NOM = 3.320239E+02 / nominal RA (deg)

DEC_NOM = 4.551389E+01 / nominal DEC (deg)

ROLL_NOM= -1.349511E+02 / nominal ROLL (deg CCW North)

EQUINOX = 2.000000E+03 / equinox

OBS_ID = 'CA110590P.N10' / observation ID

39

ROR_NUM = 110590 / ROR number

OBSERVER= 'MPE, ROSAT-TEAM' / PI name

SETUPID = 'NOMINAL ' / Instrument setup

DATE-OBS= '20/06/90' / UT date of obs start (DD/MM/YY)

TIME-OBS= '11:24:43.000' / UT time of obs start (HH:MM:SS)

DATE_END= '20/06/90' / UT date of obs end (DD/MM/YY)

TIME_END= '13:07:12.000' / UT time of obs end (HH:MM:SS)

MJD-OBS = 4.806248E+04 / MJD of seq start

SCSEQBEG= 1606667 / SC seq start(se
)

SCSEQEND= 1612816 / SC seq end (se
)

NUM_OBIS= 2 / Number of obs intervals (OBIs)

LIVETIME= 1.884999E+03 / Live time

DTCOR = 9.602644E-01 / Dead time
orre
tion fa
tor

ONTIME = 1.963000E+03 / On time

MPLSX_ID= 5 / Sour
e number from merged sour
e list (MPLSX)

EFFAREA = 1.0000E+00 / Effe
tive area s
aling fa
tor

QUALITY = 0 / Quality of data (0 = good data)

RADECSYS= 'FK5 ' / WCS for this file

OFFAX = 1.478056E+01 / Off-axis angle of sour
e in ar
min

COMMENT

COMMENT The following keywords are required in order to
onform

COMMENT to the Offi
e of Guest Investigator Programs standard:

COMMENT

AREASCAL= 1.0000E+00 / Area s
aling fa
tor

BACKFILE= 'NONE ' / No ba
kground file

BACKSCAL= 1.0000E+00 / Ba
kground s
aling fa
tor

CORRFILE= 'NONE ' / No
orre
tion file

CORRSCAL= 1.0000E+00 / Corre
tion file s
aling fa
tor

RESPFILE= 'NONE ' / BLDRSP response file name (default)

ANCRFILE= 'NONE ' / BLDRSP an
illary response file name (default)

XFLT0001= ' ' / Required keyword

PHAVERSN= '1992A ' / Version # of OGIP file spe
ifi
ation

POISSERR= T / Poissonian errors appropriate

SYS_ERR = 0.0 / No systemati
 error

CHANTYPE= 'PI ' / Gain-
orre
ted
hannels used

DETCHANS= 256 / Total number of PHA
hannels available

COMMENT

COMMENT End required OGIP keywords

COMMENT

COMMENT This extension
ontains the off-axis histogram

COMMENT for the sour
e given in the header.

HISTORY

HISTORY SASS file used: SPCBF.SEQ

HISTORY

HISTORY Corresponden
e with SASS variables:

HISTORY

HISTORY OFF_AX_RAD = OFF_SPB

HISTORY FRAC_TIME = OHS_SBP

OFF_AX_RAD FRAC_TIME

0 0

5 0

40

10 2.17989E-04

15 0.73768

20 0.2621

25 0

30 0

35 0

40 0

45 0

50 0

55 0

57.5 0

60 0

What does this �le
ontain? There's a lot of stu� all mixed together. We might des
ribe it as follows:

Table OAH005(2
ols, 14 rows)

Colname OFF_AX_RAD FRAC_TIME

Datatype Real(4) Real(4)

Unit none none

Elt type V V

Elt dim 1 1

Disp none none

Des
 'Off-axis grid point for histogram bin (ar
min)'

'Fra
tion of time spent by sour
e in bin'

Component name (same as
olname)

Array dim 0 0

Cells: 1 element per
ell

Elements: 1 value per element (type V, dimension 1)

Values:

0 0

5 0

10 2.17989E-04

15 0.73768

20 0.2621

25 0

30 0

35 0

40 0

45 0

50 0

55 0

57.5 0

60 0

Data Subspa
e(4 axes)

TIME [1606667:1612816)

Coordinate: Origin = 0

Value = JD 2448044.379745370370074 d

41

Delta = 1

Unit = s

Comment SC seq start(se
)

Corre
tion Fa
tor 0.96026 (DTCOR)

RA/DEC Region not given (would be ni
e!)

2D Coordinate: Origin = not given

Value = J2000 (332.0239, +45.51389)

Delta = not given

Unit = deg

The following data subspa
e axes are not expli
itly present in the file:

OFF_AX_RAD [0:60℄

Unit = ar
min

Comment Off-axis grid point for histogram bin

FRAC_TIME [0:1℄

Unit = none

Comment Fra
tion of time spent by sour
e in bin

The following header
ards from the file are not retained

in our 'model' version as header
ards per se be
ause

they
ontain information about the stru
ture of the

file or the attributes of its data axes:

\small

\begin{verbatim}

Cards from FITS standards, mapped to table stru
ture:

XTENSION= 'BINTABLE' / binary table extension

BITPIX = 8 / 8-bit bytes

NAXIS = 2 / 2-dimensional binary table

NAXIS1 = 8 / width of table in bytes

NAXIS2 = 14 / number of rows in table

PCOUNT = 0 / size of spe
ial data area

GCOUNT = 1 / one data group (required keyword)

TFIELDS = 2 / number of fields in ea
h row

TTYPE1 = 'OFF_AX_RAD' / Off-axis grid point for histogram bin (ar
min)

TFORM1 = '1E ' / data format of the field: 4-byte REAL

TUNIT1 = 'ar
min ' / physi
al unit of field

TTYPE2 = 'FRAC_TIME' / Fra
tion of time spent by sour
e in bin

TFORM2 = '1E ' / data format of the field: 4-byte REAL

TUNIT2 = 'NONE ' / physi
al unit of field

EXTNAME = 'OAH005 ' / Dete
t extension-asp histogram for given sour
e

Cards from OGIP rules, mapped to subspa
e and
oordinate info:

MJDREFI = 48043 / MJD integer SC
lo
k start

MJDREFF = 8.79745370370074E-01 / MJD fra
tion SC
lo
k start

ZERODATE= '01/06/90' / UT date of SC start (DD/MM/YY)

ZEROTIME= '21:06:50' / UT time of SC start (HH:MM:SS)

RA_NOM = 3.320239E+02 / nominal RA (deg)

42

DEC_NOM = 4.551389E+01 / nominal DEC (deg)

ROLL_NOM= -1.349511E+02 / nominal ROLL (deg CCW North)

EQUINOX = 2.000000E+03 / equinox

DATE-OBS= '20/06/90' / UT date of obs start (DD/MM/YY)

TIME-OBS= '11:24:43.000' / UT time of obs start (HH:MM:SS)

DATE_END= '20/06/90' / UT date of obs end (DD/MM/YY)

TIME_END= '13:07:12.000' / UT time of obs end (HH:MM:SS)

MJD-OBS = 4.806248E+04 / MJD of seq start

SCSEQBEG= 1606667 / SC seq start(se
)

SCSEQEND= 1612816 / SC seq end (se
)

LIVETIME= 1.884999E+03 / Live time

DTCOR = 9.602644E-01 / Dead time
orre
tion fa
tor

ONTIME = 1.963000E+03 / On time

When writing this �le ba
k out, all of the above
ards would be generated automati
ally by the FITS writing

layer; there's no need for any of the software beyond the IO layer to ever deal with them.

The remaining header
ards
ome in a number of groups, whi
h we
an't dedu
e from the present stru
ture of

the �le:

Ungrouped header
ards

OFFAX 14.78056

Unit ar
min

Comment Nominal off-axis angle of sour
e

Header group PROCESSING

CONTENT = 'SOURCE ' / data
ontent of file

ORIGIN = 'USRSDC ' / origin of pro
essed data

DATE = '13/07/94' / FITS
reation date (DD/MM/YY)

IRAFNAME= 'rp110590n00_oah005.tab' / IRAF file name

RDF_VERS= '2.9 ' / Rationalized Data Format release version number

RDF_DATE= '13-JUL-1994' / Rationalized Data Format release date

PROC_SYS= 'SASS7_2_0' / Pro
essing system

PROCDATE= '2-JUN-1994 11:20:34' / SASS SEQ pro
essing start date

REVISION= 2 / Revision number of pro
essed data

Header group OBSERVATION_DETAILS

TELESCOP= 'ROSAT ' / mission name

INSTRUME= 'PSPCC ' / instrument name

OBS_MODE= 'POINTING' / obs mode: POINTING,SLEW, OR SCAN

FILTER = 'NONE ' / filter id: NONE OR BORON

OBJECT = 'XRT/PSPC PSF AR LAC' / name of obje
t

OBS_ID = 'CA110590P.N10' / observation ID

OBSERVER= 'MPE, ROSAT-TEAM' / PI name

NUM_OBIS= 2 / Number of obs intervals (OBIs)

ROLL_NOM= -134.95

Header group ROSAT_SPECIFIC

ROR_NUM = 110590 / ROR number

SETUPID = 'NOMINAL ' / Instrument setup

MPLSX_ID= 5 / Sour
e number from merged sour
e list (MPLSX)

QUALITY = 0 / Quality of data (0 = good data)

Header group OGIP_COMPAT / These keywords may be ignored by our software

43

EFFAREA = 1.0000E+00 / Effe
tive area s
aling fa
tor

COMMENT

COMMENT The following keywords are required in order to
onform

COMMENT to the Offi
e of Guest Investigator Programs standard:

COMMENT

AREASCAL= 1.0000E+00 / Area s
aling fa
tor

BACKFILE= 'NONE ' / No ba
kground file

BACKSCAL= 1.0000E+00 / Ba
kground s
aling fa
tor

CORRFILE= 'NONE ' / No
orre
tion file

CORRSCAL= 1.0000E+00 / Corre
tion file s
aling fa
tor

RESPFILE= 'NONE ' / BLDRSP response file name (default)

ANCRFILE= 'NONE ' / BLDRSP an
illary response file name (default)

XFLT0001= ' ' / Required keyword

PHAVERSN= '1992A ' / Version # of OGIP file spe
ifi
ation

POISSERR= T / Poissonian errors appropriate

SYS_ERR = 0.0 / No systemati
 error

CHANTYPE= 'PI ' / Gain-
orre
ted
hannels used

DETCHANS= 256 / Total number of PHA
hannels available

COMMENT

COMMENT End required OGIP keywords

COMMENT

Header group COMMENTS

COMMENT This extension
ontains the off-axis histogram

COMMENT for the sour
e given in the header.

HISTORY

HISTORY SASS file used: SPCBF.SEQ

HISTORY

HISTORY Corresponden
e with SASS variables:

HISTORY

HISTORY OFF_AX_RAD = OFF_SPB

HISTORY FRAC_TIME = OHS_SBP

How would we redesign this �le to take more advantage of the data model while remaining
ompatible with

software that expe
ts the old format? While I do not expe
t that we will be writing software to regenerate PSPC

standard data produ
ts in this way, it's a useful exer
ise to show what is needed to add the extra stru
ture.

� We add
omments to denote Header Groups, grouping the table attributes. This
ould be used by browsers

to organize the user's view of the data. It would be ni
e for software to be able to use su
h header groups,

but there is a risk that some FITS readers will mangle the order of the header keywords, mixing up the group

memberships. I still feel that it's an enhan
ement worth having, with the warning to users that if they pass

the �les through other software they may lose that information.

� The other way of making header groups is to expli
itly add named
ards. This is
omparatively ineÆ
ient but

may be the way to go when it's important that the linkage be robust. This is illustrated with the DAREL

keywords for OFFAX and ROLL NOM.

� The dataset is a
tually binned data; the OFF AX RAD
olumn
ontains bins whi
h for some perverse reason

are uneven in size near the ends. I
ould have de�ned a spe
ial element type to denote bins where the boundaries

are dedu
ed to be half way to the next entry, but this would require the software to handle more than one

row at a time. I prefer to a

ept the overhead of the extra two
olumns COL1 LO and COL1 HI, turning

OFF AX RAD into a
olumn of element type T (two sided un
ertainty).

44

� We will store the extra
tion region in the data subspa
e header. The information in
ludes the region spe
i�
a-

tion in sky pixel
oordinates and the transformation from sky pixel
oordinates to RA and De
, the latter being

opied from the original �le. This gives us a more logi
al pla
e to put the info now stored in RA NOM and

DEC NOM. If we had the region spe
i�
ation in RA and De
 instead of pixels, we would store it in keyword

DSC1 instead of DS1.

� The preferred
olumns are OFF AX RAD and TIME; but we don't need to in
lude PREF1 and PREF2

keywords sin
e these are the only two
olumns at the data model level and they are in the
orre
t order.

XTENSION= 'BINTABLE' / binary table extension

BITPIX = 8 / 8-bit bytes

NAXIS = 2 / 2-dimensional binary table

NAXIS1 = 16 / width of table in bytes

NAXIS2 = 14 / number of rows in table

PCOUNT = 0 / size of spe
ial data area

GCOUNT = 1 / one data group (required keyword)

TFIELDS = 4 / number of fields in ea
h row

TTYPE1 = 'OFF_AX_RAD' / Off Axis Radius

TFORM1 = '1E ' / data format of the field: 4-byte REAL

TUNIT1 = 'ar
min ' / physi
al unit of field

TTYPE2 = 'COL1_LO ' / Lower Un
ertainty

TFORM2 = '1E ' / 4 byte real

TUNIT2 = 'ar
min ' /

TTYPE3 = 'COL1_HI ' / Upper Un
ertainty

TFORM3 = '1E ' / 4 byte real

TUNIT3 = 'ar
min ' /

TTYPE4 = 'FRAC_TIME' / Fra
tional Exposure Time

TFORM4 = '1E ' / data format of the field: 4-byte REAL

TUNIT4 = ' ' / physi
al unit of field

EXTNAME = 'OAH005 ' / Off Axis Histogram

TDISP1 = 'F8.2 ' / Format to display OFF AX RAD

TDISP4 = 'F8.6 ' / Format to display FRAC TIME

TLMIN1 = 0.0 / Valid range for
olumns

TLMAX1 = 60.0 /

TLMIN4 = 0.0 /

TLMAX4 = 1.0 /

COMMENT

COMMENT ASC Table Keywords

COMMENT

DCFIELDS= 2 / Number of logi
al
olumns

DCETYP1 = 'T ' / Two sided un
ertainty

DCITYP1 = '[) ' / Interval type

COMMENT

COMMENT ASC Data Subspa
e Keywords

COMMENT

DSNAXIS = 1 / Number of data subspa
e axes

DSNAM1 = 'SKYPOS ' / Sky pixel position

DSDIM1 = 2 / Dimension of DSNAM1

DSTYP1 = 'X ' / First
omponent of DSNAM1

DSTYP2 = 'Y ' / Se
ond
omponent of DSNAM1

DSUNIT1 = 'pixel ' /

DSCNAM1 = 'EQPOS ' / Coordinate system on DSNAM1

45

DSCTYP1 = 'RA---TAN' / Transform for axis 1

DSCTYP2 = 'DEC--TAN' / Transform for axis 2

DSCUNI1 = 'deg ' /

DSCRVL1 = 332.0239 / Referen
e RA value (RA_NOM)

DSCRVL2 = 45.5138 / Referen
e De
 value (DEC_NOM)

DSCRPX1 = 4096.5000 / Referen
e X value

DSCRPX2 = 4096.5000 / Referen
e Y value

DSCDLT1 = -0.0124 / Deg per pixel

DSCDLR2 = 0.0124 / Deg per pixel

DS1 = '
 4087.3 4012.3 43.2' / Extra
tion region in X,Y
oords

DSTYP3 = 'TIME ' / Mission time

DSUNIT3 = 's ' /

DS2L1 = 1606667.0 / Start time

DS2U1 = 1612816.0 / Stop time

DSITYP3 = '[) ' / Interval type for TIME

COMMENT

COMMENT Alternative syntax for the above three keywords would be:

COMMENT DS2 = '[SCSEQBEG:SCSEQEND)'

COMMENT

DSCTYP3 = 'DATE ' / Calendar date

DSCDLT3 = 1.15741E-05 / Days per se
ond

DSCRVL3 = 48043.879745370370074 / MJD of SC
lo
k start

DSCRPX3 = 0.0 / SC
lo
k start

DSCUNI3 = 'd ' /

DSTYP4 = 'OFF_AX_RAD' / Range defaults to TLMIN1/TLMAX1

DSTYP5 = 'FRAC_TIME ' /

COMMENT

COMMENT ASC Table Attributes

COMMENT

COMMENT We only need to use expli
t DANAMn keywords when we

COMMENT want to add extra information to a keyword.

COMMENT

DANAM1 = 'OFFAX' / Attribute

OFFAX = 1.478056E+01 / Off-axis angle of sour
e in ar
min

DAUNI1 = 'ar
min' / Unit of DANAM1

DAREL1 = 'OFF_AX_RAD' / Keyword OFFAX is bound to
olumn OFF AX RAD

DANAM2 = 'ROLL_NOM' / Attribute

ROLL_NOM= -1.349511E+02 / nominal ROLL (deg CCW North)

DAUNI2 = 'deg' /

DAREL2 = 'SKYPOS' / ROLL_NOM bound to DSS axis SKYPOS

DANAM3 = 'SRC_OFF_AX_RAD' / Same as OFFAX,

DAVAL3 = 1.478056E+01 / but illustrating a name longer than 8
hars

DAUNI3 = 'ar
min ' /

DANAM4 = 'ONTIME ' / Denote the fa
t that the keywords named

DAREL4 = 'TIME ' / are tied to the TIME information, so if that

DANAM5 = 'DTCOR ' / be
omes invalid so do these.

DAREL5 = 'TIME ' / Debatable whether we would a
tually bother

DANAM6 = 'LIVETIME' / to add these linkages in this
ase.

46

DAREL6 = 'TIME ' /

COMMENT

COMMENT Header Group PROCESSING

COMMENT

CONTENT = 'SOURCE ' / data
ontent of file

ORIGIN = 'USRSDC ' / origin of pro
essed data

DATE = '13/07/94' / FITS
reation date (DD/MM/YY)

IRAFNAME= 'rp110590n00_oah005.tab' / IRAF file name

RDF_VERS= '2.9 ' / Rationalized Data Format release version number

RDF_DATE= '13-JUL-1994' / Rationalized Data Format release date

PROC_SYS= 'SASS7_2_0' / Pro
essing system

PROCDATE= '2-JUN-1994 11:20:34' / SASS SEQ pro
essing start date

REVISION= 2 / Revision number of pro
essed data

COMMENT

COMMENT Header Group Observation Details

COMMENT

TELESCOP= 'ROSAT ' / mission name

INSTRUME= 'PSPCC ' / instrument name

OBS_MODE= 'POINTING' / obs mode: POINTING,SLEW, OR SCAN

FILTER = 'NONE ' / filter id: NONE OR BORON

OBJECT = 'XRT/PSPC PSF AR LAC' / name of obje
t

OBS_ID = 'CA110590P.N10' / observation ID

OBSERVER= 'MPE, ROSAT-TEAM' / PI name

COMMENT

COMMENT Header Group ROSAT Spe
ifi

COMMENT

ROR_NUM = 110590 / ROR number

SETUPID = 'NOMINAL ' / Instrument setup

COMMENT

COMMENT Header Group HEASARC Position Keywords

COMMENT

RA_NOM = 3.320239E+02 / nominal RA (deg)

DEC_NOM = 4.551389E+01 / nominal DEC (deg)

EQUINOX = 2.000000E+03 / equinox

RADECSYS= 'FK5 ' / WCS for this file

COMMENT

COMMENT Header Group HEASARC Timing Keywords

COMMENT

MJDREFI = 48043 / MJD integer SC
lo
k start

MJDREFF = 8.79745370370074E-01 / MJD fra
tion SC
lo
k start

ZERODATE= '01/06/90' / UT date of SC start (DD/MM/YY)

ZEROTIME= '21:06:50' / UT time of SC start (HH:MM:SS)

DATE-OBS= '20/06/90' / UT date of obs start (DD/MM/YY)

TIME-OBS= '11:24:43.000' / UT time of obs start (HH:MM:SS)

47

DATE_END= '20/06/90' / UT date of obs end (DD/MM/YY)

TIME_END= '13:07:12.000' / UT time of obs end (HH:MM:SS)

SCSEQBEG= 1606667 / SC seq start(se
)

SCSEQEND= 1612816 / SC seq end (se
)

MJD-OBS = 4.806248E+04 / MJD of seq start

NUM_OBIS= 2 / Number of obs intervals (OBIs)

LIVETIME= 1.884999E+03 / Live time

DTCOR = 9.602644E-01 / Dead time
orre
tion fa
tor

ONTIME = 1.963000E+03 / On time

MPLSX_ID= 5 / Sour
e number from merged sour
e list (MPLSX)

EFFAREA = 1.0000E+00 / Effe
tive area s
aling fa
tor

COMMENT

COMMENT Header Group OGIP_COMPAT

COMMENT

COMMENT The following keywords are required in order to
onform

COMMENT to the Offi
e of Guest Investigator Programs standard:

COMMENT

AREASCAL= 1.0000E+00 / Area s
aling fa
tor

BACKFILE= 'NONE ' / No ba
kground file

BACKSCAL= 1.0000E+00 / Ba
kground s
aling fa
tor

CORRFILE= 'NONE ' / No
orre
tion file

CORRSCAL= 1.0000E+00 / Corre
tion file s
aling fa
tor

RESPFILE= 'NONE ' / BLDRSP response file name (default)

ANCRFILE= 'NONE ' / BLDRSP an
illary response file name (default)

XFLT0001= ' ' / Required keyword

PHAVERSN= '1992A ' / Version # of OGIP file spe
ifi
ation

COMMENT Note that the error info given here applies to the
ounts errors

COMMENT whi
h are in an entirely different table; so we don't

COMMENT atta
h them to the data model errors in this file.

POISSERR= T / Poissonian errors appropriate

SYS_ERR = 0.0 / No systemati
 error

CHANTYPE= 'PI ' / Gain-
orre
ted
hannels used

DETCHANS= 256 / Total number of PHA
hannels available

COMMENT

COMMENT End required OGIP keywords

COMMENT

COMMENT Header Ungrouped

COMMENT

QUALITY = 0 / Quality of data (0 = good data)

COMMENT

COMMENT This extension
ontains the off-axis histogram

COMMENT for the sour
e given in the header.

HISTORY

HISTORY SASS file used: SPCBF.SEQ

HISTORY

HISTORY Corresponden
e with SASS variables:

HISTORY

HISTORY OFF_AX_RAD = OFF_SPB

HISTORY FRAC_TIME = OHS_SBP

48

OFF_AX_RAD COL1_LO COL1_HI FRAC_TIME

0 0 2.5 0

5 2.5 2.5 0

10 2.5 2.5 2.17989E-04

15 2.5 2.5 0.73768

20 2.5 2.5 0.2621

25 2.5 2.5 0

30 2.5 2.5 0

35 2.5 2.5 0

40 2.5 2.5 0

45 2.5 2.5 0

50 2.5 2.5 0

55 2.5 1.25 0

57.5 1.25 1.25 0

60 1.25 0 0

8.2 Case Study: Bary
enter Corre
tion Algorithm

We analysed the Bary
enter Corre
tion Algorithm to see how it would be laid out in terms of the data model.

The algorithm uses the following ASC Tables:

� Event List: this
ontains rows whi
h we refer to as photons, and a set of
olumns whi
h in
lude at least Pixel

Position and Time. The Pixel Position Column Data Des
riptor has Data Des
riptor with default name Pixel Position

and
omponent names X and Y; it must be of element dimension 2. We will a

ess it by element type V (Value). It

must also have a Data Coordinate Des
riptor whi
h
ontains the Equatorial Position (RA and De
). The Time Data

Des
riptor may have a Data Coordinate Des
riptor giving the absolute Date.

� Orbital Data: This is a sta
k
ontaining the names of spa
e
raft and pointers to their Ephemeris �les.

� Solar System Ephemeris: This is a sta
k
ontaining the names of planets and pointers to their Ephemeris �les.

� Ephemeris: This is a table with the
olumns Time and 3-Ve
tor-Position. The latter has element dimension 3 and

omponent names X,Y,Z. The ephemeris table has a table attribute Mass, giving the mass of the orbiting body.

The algorithm is:

� Identify the spa
e
raft in use for this event list: this should be a table attribute of the event list.

� Find the
orresponding spa
e
raft ephemeris from the orbital data sta
k.

� Open output table with same format as input event list but with extra
olumn named BARY TIME of dimension 1 and

type U. Unit is se
onds of mission time;
oordinate system is
opied from input
olumn whose default name is TIME.

Add
omment to header des
ribing the fa
t that BARY TIME is the time of a di�erent event (arrival of a photon at

the bary
enter) in the same
oordinate system as TIME.

� For ea
h row in the table, get the Pixel Position. Cal
ulate the Equatorial Position using that Data Des
riptor's Data

Coordinate Transform.

� Cal
ulate the 3-ve
tor dire
tion of the photon (the sour
e ve
tor)from the equatorial position.

� Get time from row of table (represents photon arrival time at spa
e
raft). (If the ephemerides are in JD rather than

mission time, may need to also use this Data Des
riptor's Data Coordinate Transform to get JD from time.) Also get

time un
ertainty if present.

� Interpolate in spa
e
raft ephemeris at the given time to return the spa
e
raft ephemeris position and un
ertainty (an

element of type U and dimension 3).

� For ea
h entry (planet) in the solar system ephemeris sta
k, interpolate in the
orresponding ephemeris and return the

mass of the planet and the position (a value element of dimension 3) at the time.

� Cal
ulate the solar system bary
enter at the given time by taking the mass weighted mean of the planetary positions.

Result is an element of type V and dimension 3.

49

� Cal
ulate the bary
enter to spa
e
raft ve
tor and its un
ertainty. Che
k that the units of bary
enter and spa
e
raft

positions are
ompatible and apply
onversions if ne
essary.

� Cal
ulate the s
alar produ
t of the spa
e
raft and sour
e ve
tors and its un
ertainty; s
ale to light travel time to obtain

orre
tion. Corre
tion is an element of type U.

� Add this to photon time and
ombine un
ertainty in quadrature. Result is bary
enter
orre
ted time (BARY TIME).

� Copy input row to output, adding new
olumn of BARY TIME.

� Loop to next photon until
omplete.

50

Name Unit Description Data Type Display Format

Element dimension d
Element type t
Array dimension n
Array spec ni, gi

ELEMENTS Coord
Descriptors

N

N

n c

DESCRIPTOR

BLOCK

IMAGE DATA

=1

= Value
= 2

= (512,512)

A(1,1) A(1,2) A(1,3)...

... A(512,512)
Rescaling of pixel values

AXIS GROUP
DESCRIPTOR

(X,Y) scales to
physical coord system

(RA,DEC) scales (X,Y) to
world coord system

COORD DESCRIPTOR
WORLD

F
i
g
u
r
e
1
1
:
D
a
t
a
M
o
d
e
l
7
b
:
D
M

I
m
a
g
e
D
e
s

r
i
p
t
o
r

5
1

