
CXC-DM-003

CXC Data Model

Vol. 3

Data Model Library Ar
hite
ture

Jonathan M
Dowell

Chandra X-ray Center

De
ember 27, 2001

Contents

1 Goals 3

2 New Stru
ture 3

3 DM fun
tionality 7

3.1 Kernels and
onverters . 8

4 History of DM development 8

4.1 Development of the
ode . 8

4.2 CDR do
uments . 9

4.3 Modi�
ations to the original
on
ept . 10

5 The DM publi
 layer 11

6 The kernel layers 12

7 The PKI 12

8 Work pa
kages 20

2

1 Goals

The
urrent CDM has a lot of useful fun
tionality, but the internals re
e
t some early

implementation
ompromises that impede both debugging and adding new abilities. The goal

of this redesign is to generate a CDM2 whi
h has the same interfa
e as the CIAO2.2 CDM

and passes the same regression tests, but has a
leaner internal design with the following

properties:

� Implementation to re
e
t the original CDM (1994) design, plus modi�
ations due to

lessons learned (see 'histori
al' se
tion).

� Possibly add hooks that may be useful in NVO related work. There are no spe
i�

design elements for this yet, but as NVO work gathers steam the DM design will be

reviewed for possible modi�
ation.

� Consistent and do
umented design, maintainable and
ommented
ode, so that others

in CXC
an maintain the
ode.

� Stable and publi
 kernel interfa
e so that others in the
ommunity
an write new

kernels.

2 New Stru
ture

The most important di�eren
e is in the layering. In the old stru
ture, kernel routines were

ast in terms that were
loser to FITS
on
epts. Thus, grouping of multiple axes and

oordinates had to be stit
hed ba
k together at the DM layer. The new kernel will operate

in terms of the DM stru
tures.

The �rst design de
ision is to
hoose between two models of kernel intera
tion:

� Allow kernel routines to dire
tly �ll DM stru
tures, for maximum eÆ
ien
y.

� Retain a stri
t layering in whi
h DM stru
tures are �lled only via interfa
e routines.

This makes it easier for others to write kernels.

I really want it to be easy to write kernels, so I
hose the se
ond. However, in our new kernel

interfa
e, we will
all DM layer routines, as opposed to the old rule in whi
h kernel routines

did not
all the DM. This implies a new layer diagram.

3

The original DM layer diagram was:

| C Appli
ation | F77 appli
ation|

- -------------------

| | F77 wrappers |

| DM publi
 layer |

| ETOOLS |

| FKER | | IQKER |

| CFITSIO | | IRAF |

------------ ---------

| |

| Region | EDSUTIL | WCSLIB|

In the �rst DM rewrite, the ETOOLS layer was removed. In the new model, we will have

the following layer diagram:

| C Appli
ation | F77 appli
ation|

- -------------------

| | F77 wrappers |

| DM publi
 layer (DMP) |

---------------- ----------------

| FKER | | IQKER |

------------------ ------------------

| CFITSIO | PKI | | PKI | IRAF |

----------- ------ |-------

| DM Internals (DMI) |

| Region | DM Utils (DMU) | WCSLIB|

4

In the old model, both the kernels and the ETOOLS layer made
alls to the EDSUTIL utility

routines whi
h
ontained a grabbag of generi
 algorithms and X-ray-astronomy
onventions.

In this model, the kernels
all a Publi
 Kernel Interfa
e (PKI) whi
h in turn a

ess a DM

Internals (DMI) layer. The DM publi
 layer will
all both PKI routines and private DM

Internals routines. The PKI routines are simply the publi
 part of the DM Internals interfa
e

and a

ess the same internal stru
tures. In order to make it easy for people to write new

kernels whi
h put and get to/from the internal stru
tures, the PKI needs to be well de�ned

and well mat
hed to these stru
tures, but the DM publi
 layer, whi
h needs to a di�erent

kind of bookkeeping and to perform eÆ
ient �ltering, may need more dire
t a

ess routines

that are not suitable for publi
 use, so it isn't restri
ted to the PKI.

The small number of EDSUTIL routines and existing kernel routines whi
h are generi
 will

be repla
ed by a DM Utils layer.

5

A CXC Tool appli
ation has further relevant stru
ture:

| CXC Tool |

| DM publi
 layer | DMTLIB | STKLIB | PARAM | DSLIBs |

-------------- ---------- --

| FKER | | IQKER | | DSLIBs|

------------------ ------------------ ---------

| CFITSIO | PKI | | PKI | IRAF |

----------- ------ |-------

| DM Internals |

| Region | DM Utils | WCSLIB|

In this diagram, DSLIBs represent the whole set of CXCDS libraries. The DM is separately

distributable, and its Core Tools (e.g. dmlist, dm
opy) are being kept as independent as

possible of the rest of the CXCDS. Therefore, the DM Core Tools will
all the DSLIBs only

through the PARAM library. In the
urrent separate distribution, whi
h is not advertised

but has been made available to a limited number of users (J. Davis/MIT; Palermo group,

who are using the Fortran wrappers), the
urrent CXC PARAM library is repla
ed by an

older version whi
h is not dependent on the other CXCDS libraries, and I will lobby for su
h

a library being formally maintained.

The DMTLIB is used for several DM tools. In the new design, the DMTLIB is expe
ted to

be fully absorbed into the DM publi
 layer.

The STKLIB handles sta
ks. The status of this library's relationship to the DM also needs

to be reviewed. Be
ause of the existing
ode base, I propose that the STKLIB remain as

is, but new DM routines be provided to open and manipulate sta
ks of datasets; these new

routines would be phased in slowly. These new routines may not be implemented in the �rst

(CIAO 3.0) phase of the redesign; the main impa
t on lower layers of the DM is that (1)

we may want to have a mode in whi
h you have a 'dmmerge on the
y', so that EOF on a

table silently triggers reading from the next table in the dataset sta
k (but this would imply

in
orporating all the header merging ma
hinery too) and (2) we want to have the ability to

apply a sta
k of �lters to a �le without reopening it. This
ould be done either by a �lter

design whi
h assumes you are always working with sta
ks of datasets, or by making the user

open a dataset un�ltered and providing an API routine to apply a �lter to a row. The former

approa
h may imply adding a lot of extra API get/put routines for the multiple-�lter
ase.

The latter approa
h
auses mu
h less grief to the existing API and I propose that solution.

6

3 DM fun
tionality

All routines in the
urrent DM API will remain, and all
urrent fun
tionality will be sup-

ported.

The following DM limitations will be addressed in the redesign:

� Header keyword ordering. There are some limitations on a

essing keywords by number

that prevent the keyword insertion routines in dmhedit from fun
tioning
orre
tly. This

is be
ause of the
onvoluted way that the
urrent DM layer intera
ts with the kernels

and should be easy to �x in a
leaner design.

� Header keyword grouping. We add the ability to de�ne and manipulate named groups

of keywords, to re
e
t the substru
ture in our headers.

� Column deletion and insertion. This will always be ineÆ
ient on FITS �les, but should

be supported nevertheless.

� Row insertion and deletion. This will require some modi�
ation of the kernel interfa
e,

and will also be intrinsi
ally ineÆ
ient for FITS.

� Support for expli
it bu�er
ushing. I will also investigate providing the ability to inhibit

ushing (for PRISM editor appli
ation) but I'm not promising, as this is intrinsi
ally

problemati
.

� Improved and do
umented error handling

� Review of fun
tionality now handled by [opt ...℄ syntax;
omplete do
umentation of

[opt ...℄ syntax.

� Improved do
umentation of bit handling. Support for easier syntax for bit �ltering

(this is a separate enough problem that it does not have to form part of the initial

redesign).

� New fun
tions to manipulate data subspa
e, deleting its members and testing whether

a row is within the subspa
e of another blo
k.

� Useful wrapper routines to handle primary header handling.

The following future upgrades are planned:

� The ASCII kernel is a high priority and a separate do
ument will des
ribe this.

7

� Very preliminary ideas for an IDL kernel, whi
h would allow DM �ltering and dataset

manipulation from the IDL
ommand line, have been dis
ussed with V. Kashyap (CfA)

and D. Lenz (RS In
.). We have established a basi
 approa
h and some design drivers

(memory management in IDL wrappers, use of the CALL EXTERNAL routine to
all

DM C
ode).

� Shared memory and/or pipe interfa
e. CFITSIO and XMM-SAS report limited su

ess

in usage of shared memory appli
ations to date, but it seems likely that some form of

shared memory or dire
t bytestream kernel will be of use in the future.

� Integrated support for asso
iating un
ertainties with
olumns.

3.1 Kernels and
onverters

It's been suggested that we abandon the kernel paradigm, work purely in FITS, and have

separate (other format) to-and-from DM
onverters. Sin
e we want to keep FITS and the

DM
leanly layered, there is a
tually not mu
h design di�eren
e implied. The QPOE and

ASCII kernels would be repla
ed with QPOE-DM and ASCII-DM
onverters, whi
h would

ontain mu
h of the same
ode as the kernels. The FITS kernel would stay as is. What we'd

lose is the ability to work with ASCII �les and mix and mat
h generi
 unix and DM tools;

we'd have to keep
onverting from FITS ba
k to ASCII to apply ASCII methods to the data.

We'd also lose the option to develop a kernel for a format whi
h supports DM
onstru
ts

that are not fully supported in FITS.

I remain
onvin
ed that support for the kernel paradigm is the right thing to do for the long

run. That doesn't stop users writing a
onverter from their favorite data format to FITS

and then running the DM tools in purely FITS mode; that's an entirely legitimate thing to

do.

4 History of DM development

4.1 Development of the
ode

The initial
on
ept of the DM was elaborated in 1994. At that point, the CXCDS
on
ept

involved a
ore IRAF
omponent, and the DM o�ered a path to also support FITS event

lists. During the PDR/CDR pro
ess, the de
ision was made to
arry out multiple obje
t-

oriented design
y
les, �rst with D. van Stone and then with P. Patsis, rather than develop

prototype
ode. This limited the usefulness of the design pro
ess. After CDR, it was de
ided

to try and build the DM by reusing the mu
h more limited ETOOLS library already under

8

development. This
aused
onsiderable awkwardness in the design and made it deviate

signi�
antly from the original
on
ept. Frequent developer turnover made progress very

slow ex
ept of
ourse for the period when Mike Noble was lead, and thanks to him the

DM did su

essfully support CXCDS development starting in 1998, and the DM tools were

wel
omed by the
ommunity following the publi
 CIAO release in 1999. I then be
ame the

developer as well as the s
ien
e lead, and removed an entire layer from the design, deleting

over 10K lines of
ode. Nevertheless, the existing design still does not fully map to the

original
on
ept and is stru
tured in a way that's hard to add new features. Thus, a major

redesign is
riti
al to provide a robust DM for long-term maintenan
e.

In the longer term, the development of an NVO proto
ol may repla
e parts of the DM.

Nevertheless, having a
lean DM will be an essential basis for my own analysis of the NVO

issues.

4.2 CDR do
uments

Se
tion 4.7.7 of DS01 des
ribes the data analysis API. In the language of se
tion 4.7.7, the

translation wrappers map to the DM Fortran wrappers, the data manipulation libraries map

to the DM publi
 and internal layers, and the DM virtual �le syntax implements the API

mini-language for des
ribing generi
 analysis obje
ts. The 'adaptation wrappers' do not

exist (I prototyped wrappers for IRAF but it was de
ided that DS
ould not support the

overhead of supporting them) but may arise if the IDL kernel is ever implemented. In Fig

4.7-14 the kernels were the IRAF IMIO and the TBTABLES kernels. The IRAF kernel is

still supported; the TBTABLES kernel was abandoned as ST Tables
an be repla
ed in IRAF

with FITS, whi
h has be
ome mu
h more important to the
ommunity in the interim. The

'generi
 data model library' and 's
ien
e data model library' layers have been merged, sin
e

there was no added value from the lower layer (I think it was
ode for the ETOOLS layer).

The DDF layer is another name for the DM kernel layer. The addition of further kernels is

ompromised in the
urrent design by the poor mat
h of the
urrent kernel API to the DM

fundamental design.

The promised features of the Data Model in 4.7.7 were

� 1D and 2D �ltering - implemented

� sta
king - supported in sta
k library

�
oordinate systems - supported

�
oordinate
onversions - supported

� un
ertainties - not implemented; a harder problem than anti
ipated.

9

� The instantiation of data produ
ts in di�erent formats = supported

� support for preferred
olumns - supported, although most data produ
ts don't make

full use of it.

� interpolation support - as des
ribed, implemented in the CIAO 2.2 dmjoin tool.

� mission independen
e and generi
ity of the DM - supported

� 'quantity' support - implemented as DM 'des
riptors'

� QPOE support - implemented, although not as fully as FITS

� FITS support - implemented

� EDF support -
on
ept abandoned, merged with QPOE kernel

� ST Tables support - not
urrently implemented

� IRAF images - implemented

� The shared memory kernel has not yet been implemented.

� OTS libraries: IRAF libraries used; TBTables, PROS, XRAY, EVTIO libraries not

used.

4.3 Modi�
ations to the original
on
ept

The dis
ussion in DS01 was not a dire
t re
e
tion of the original DM design; it re
e
ted the

ETOOLS
ode reuse
ompromise.

In terms of the original design, generi
 (ve
tor array) des
riptors have now been implemented,

but the simple
ases (s
alars, non-array ve
tors) often have separate
ode sin
e they were

oded �rst; in many
ases that
ode
ould be simpli�ed by treating them as spe
ial
ases of

the generi
.

There are two main
hanges I feel are needed to the original DM
on
ept: a way to modify

data subspa
es to drop quantities when their �lters get too
ompli
ated, and a modi�
ation

of the implementation of `element types', whi
h were to be used to handle un
ertainties.

When �ltering, there typi
ally
omes a point in data analysis where propagating parts of

the history is no longer interesting. I therefore propose a new syntax option to allow editing

of the data subspa
e. For instan
e, you may want to apply the time �lter for CCD4 to a

�le without also applying the

did=4 �lter. This syntax will be equivalent to the [
ols ...℄

syntax, but for the
olumns of the data subspa
e.

10

Se
ondly, I now propose to treat
ompli
ated element types using the existing ve
tor
ol-

umn me
hanism, rather than add an extra layer of stru
ture. The DM's per
eived to be

ompli
ated enough without adding further dimensions.

Apart from these
hanges, the 1994 DM do
ument
ontinues to re
e
t my view of the
orre
t

low-level generi
 interfa
e.

5 The DM publi
 layer

The DM publi
 layer (DMP) API will be largely un
hanged, although DMTLIB routines

will be added.

The DM publi
 layer's internal stru
tures will be largely un
hanged. However, the PKI will

now deal with the mapping from DM stru
tures to kernel stru
tures - previously, the DM

layer split things up into kernel-level (a
tually ETOOLS)
on
epts and then passed them to

the kernel interfa
e. In the new design, it is the kernel's responsibility to translate between

DM and kernel
on
epts.

Some
ode that was previously in the kernels will now be in the DM layer. Spe
i�
ally,

the row �ltering
ode will be at the DM layer; this will
ause minimal performan
e hit,

if any. This will avoid dupli
ating the �ltering
ode in the kernels, dupli
ating all the

�ltering information (ranges and regions) in the kernels, and allows more intelligen
e in the

�ltering (easier a

ess to high level info about the obje
ts being �ltered). Performan
e will

be improved by having the kernels return more than one row at a time when �ltering. At

present, when �ltering, one row at a time is returned to the top layer. In the new design,

a bu�er of rows will be returned and an index will be used to mark whi
h rows are good.

A memory
opy is already done when returning multiple rows in an API
all, so there is no

downside to this approa
h and the ability to
all FITSIO to return multiple rows at on
e

should result in a measurable speedup. It will be re
alled that the
urrent row �ltering

ode was written under heroi
 time pressure by Mike and was always intended as a stop-gap

approa
h; I have done some rework sin
e then but the original skeleton is still
onstraining

us.

In
ontrast, mu
h of the
ode that was in the DM layer for
omposing ve
tor
olumns and

basis keywords will now be relegated to the DM internals layer and
alled by the kernels. This

avoids the problems
aused when the kernels pi
k information apart in their layer whi
h then

has to be stit
hed ba
k together in the DM layer. In general this �ts with the philosophi
al

approa
h of �tting data into the DM
on
epts as soon as possible and having the internal

work done in terms of those
on
epts, whi
h will make a lot of the internals more robust.

The
oordinate and DSS manipulation
ode will largely remain at the DMP layer, although

11

the writing and reading parts of the
ode will be split between the KER and DMI layers for

the reasons mentioned above for ve
tors.

6 The kernel layers

The kernel layer internal stru
tures will be altered to avoid
a
hing DM obje
t values a se
ond

time. The internal stru
tures will be limited to
ontaining kernel-spe
i�
 information.

To aid in
opying obje
ts, the di�erent kernels will share a
ommon handle type. Some PKI

routines will a

ept a dmKernelData handle
ontaining kernel-spe
i�
 data for an obje
t.

The kernel routines will test the
ommon kernel id member of this stru
ture, and if it's the

right kernel, the data will be
opied, otherwise it will be ignored. For example, FITS ASCII

and binary tables both map to a DM table. In the new design, the blo
k will have a kernel-

spe
i�
 pointer that says "I was originally a FITS ASCII Table". If it's
opied to a QPOE,

that information will be ignored, but if it's
opied to another FITS �le, it will be pi
ked up

and (unless overridden by a spe
i�
 dire
tive) the resulting FITS �le will be made an ASCII

table instead of the default binary kind. This provides a me
hanism for making sure that a

opy of a FITS �le to a FITS �le preserving as mu
h of the original �le's idiosyn
rasies as

possible, while retaining the
apability to
opy it to a QPOE �le in a
lean way.

7 The PKI

Here are the existing Kertable routines and their PKI analogs. The names 'Obje
t' and

'Property' will be
hanged to 'Blo
k' and 'Key' to make the DM nomen
lature
onsistent.

Data-type families will be made type-generi
, so that

kPutProperty_double(blo
k, name, double val, status)

be
omes

kPutKey(blo
k, name, dmDOUBLE, void* val, status).

This redu
es the number of separate PKI routines.

Some des
riptor-spe
i�
 routines will be made des
riptor-generi
, so that kSetColumnUnits

be
omes kSetDes
riptorUnit and works to set the units for keys and
olumns and
oords.

12

This basi
ally moves a swit
h statement into the kernels, but de
reases the number of kernel

routines; this de
ision may be revisited.

Some routines that a

ess by name will be
hanged to a

ess by number or handle, so

that renaming the obje
t or (in some
ases) multiple obje
ts with the same name will not

ause problems. Attention will be given to make sure that this doesn't
ause new problems

when reordering obje
ts (whi
h is not well supported in the
urrent design anyway):
areful

distin
tion will be made between raw obje
t order and virtual-�le obje
t order.

13

etBool (*kA

essDataset) (
har *dsname); TBD

etBool (*kCanCreateDataset)(
har* dsname); TBD

void (*kCreateDatasetFun
) (
har *dsname, kdsHandle *kds,

etStatus *status);

Same?

void (*kDeleteDatasetFun
) (
har *dsname, etStatus *sta-

tus);

Same?

void (*kRenameDatasetFun
) (
har *dsname,
har *newd-

sname, etStatus *status);

Same?

void (*kOpenDataset) (
har *dsname, etBool update, kd-

sHandle *kds, etStatus *status);

Same?

void (*kCloseDatasetFun
) (kdsHandle kds, etStatus *sta-

tus);

Same?

void (*kFlushDatasetFun
) (kdsHandle kds, etStatus *sta-

tus);

Same?

etBool (*kA

essObje
tFun
) (kdsHandle kds,
har *obj-

name);

Not needed

void (*kCreateObje
tFun
) (kdsHandle kds,
har *objname,

edsObjType objtype, kobjHandle *kobj, etStatus *status);

Same

void (*kGetObje
tNamesFun
) (kdsHandle kds,
har ***ob-

jnames, long *nobje
t, etStatus *status);

Repla
e with GetNoBlo
ks and GetBlo
kNameByNo?

void (*kGetOpenObje
tName) (kobjHandle kobj,
har **ob-

jname,etStatus *status);

Change to a

ess by No

void (*kGetObje
tTypeFun
) (kdsHandle kds,
har *obj-

name, edsObjType *objtype, etStatus *status);

Same

void (*kDeleteObje
tFun
) (kdsHandle kds,
har *objname,

etStatus *status);

Change to a

ess by No

void (*kRenameObje
tFun
) (kdsHandle kds,
har *obj-

name,
har *newobjname, etStatus *status);

Change to a

ess by No

edsObjType (*kOpenObje
tAs) (kdsHandle kds,
har *ob-

jname, edsObjType eObje
t, kobjHandle *kobj, etStatus

*status);

TBD

void (*kCloseObje
tFun
) (kobjHandle kobj, etStatus *sta-

tus);

Same

1
4

void (*kFlushObje
tFun
) (kobjHandle kobj, etStatus *sta-

tus);

Same

etBool (*kA

essProperty) (kobjHandle kobjh,
har*); TBD

void (*kDeleteProperty) (kobjHandle kobjh,
har*, etSta-

tus*);

TBD

void (*kPutProperty<type>) (kobjHandle kobjh,
har*

propname, <type> val, etStatus* status);

Add des
 and unit and
omment arguments

Make type-generi

void (*kGetProperty<type>) (kobjHandle kobjh,
har*

propname, <type>* val, etStatus* status);

Add extra info, make type-generi

void (*kPutPropertyComment) (kobjHandle kobjh,
har*

propname,
har*
omm, etStatus* status);

Make des
riptor-generi

void (*kGetPropertyComment) (kobjHandle kobjh,
har*

propname,
har**
omm, etStatus* status);

Make des
riptor-generi

void (*kGetPropertyNames) (kobjHandle kobjh,
har***

propnames, long* numprop, etStatus* status);

Repla
e with a

ess by number

void (*kGetPropertyType) (kobjHandle kobjh,
har* prop-

name, etDataType* proptype, etStatus* status);

A

ess by handle

void (*kGetNewKWIndex) (kobjHandle kobj,
har*

strIndexKey, long* n, etStatus* pStatus);

Deleted, done within kernel

etBool (*kGetKWIndex) (kobjHandle kobj,
har* strKW-

Name,
har* strIndexKey, long* n, etStatus* pStatus);

Deleted, done within kernel

har* (*kET2KernelDatatype) (etDataType etType, etSta-

tus* pStatus);

Deleted, work in DM types

etDataType (*kKernel2ETDatatype) (
har* strKernel-

Datatype, etStatus* pStatus);

Deleted

void (*kTotalTableRows) (kobjHandle kobjh, long* num-

rows, etStatus* status);

Same

void (*kTotalTableColumns) (kobjHandle kobjh, long* num-

rows, etStatus* status);

Same

etBool (*kA

essColumn) (kobjHandle kobjh,
har*
ol-

name);

Not needed

1
5

void (*kCreateColumn) (kobjHandle table,
har *
ol-

name,etDataType datatype, long length, long string length,

long* axlen, long naxes,
har *units,
har *format, int var,

har* des
, k
olHandle *
ol, etStatus *status);

Same?

void (*kDeleteColumn) (kobjHandle kobj,
har*
olname, et-

Status *status);

A

ess by handle

void (*kRenameColumn)(kobjHandle table,
har*
olname,

har* new
olname, etStatus* status);

A

ess by handle

void (*kOpenColumn) (kobjHandle table,
har *
olname,

k
olHandle *
ol, etStatus *status);

A

ess by handle, name table held at DMP layer

void (*kOpenColumnByPosition) (kobjHandle table, long

olpos, k
olHandle *
ol, etStatus *status);

Combined with routine above

void (*kGetOpenColumnName) (k
olHandle
ol,
har** str,

etStatus* status);

Des
riptor-generi

void (*kGetColumnType) (kobjHandle table,
har *
olname,

etDataType *
oltype, etStatus *status);

Des
riptor-generi

void (*kGetColumnLength) (kobjHandle table,
har *
ol-

name, long *length, long** axlen, long* naxes, etStatus *sta-

tus);

Des
riptor-generi

void (*kGetColumnStringLength) (kobjHandle table,
har

*
olname, long *string length, etStatus *status);

Des
riptor-generi

void (*kGetColumnUnits) (kobjHandle table,
har *
olname,

har **units, etStatus *status);

Des
riptor-generi

void (*kGetColumnFormat) (kobjHandle table,
har *
ol-

name,
har **format, etStatus *status);

Des
riptor-generi

void (*kGetColumnNames) (kobjHandle table,
har***

names, long* num, etStatus* status);

Not needed

void (*kSetColumnUnits)(kobjHandle table,
har*
olname,

har* format, etStatus* status);

Des
riptor-generi

void (*kSetColumnFormat)(kobjHandle table,
har*
ol-

name,
har* format, etStatus* status);

Des
riptor-generi

void (*kGetRows)(long rownum, k
olHandle*
olhandles,

long num
ols, long bu
en, k
olBu�er
olbu�er, long* nread,

int invert, etStatus* status);

To be redesigned

1
6

void (*kPutRows)(long rownum, k
olHandle*
olhandles,

long num
ols, long bu
en, k
olBu�er
olbu�er, long nwrite,

etStatus* status);

To be redesigned

void (*kGetAxLen)(kobjHandle, long, long*, etStatus*); Des
riptor-generi

void (*kGetNDim)(kobjHandle, long*, etStatus*); Des
riptor-generi

void (*kGetImageType)(kobjHandle, etDataType*, etSta-

tus*);

Des
riptor-generi

void (*kGetSe
tion)(kobjHandle, long*, long*, long, void*,

int,etStatus*);

Same?

void (*kSetAxLen)(kobjHandle, long, long, etStatus*); Des
riptor-generi

void (*kSetNDim)(kobjHandle, long, etStatus*); Des
riptor-generi

void (*kSetImageType)(kobjHandle, etDataType, etSta-

tus*);

TBD

void (*kPutSe
tion)(kobjHandle, long*, long*, long, void*,

etStatus*);

Same?

void (*kAddIntervalToFS)(kobjHandle table, etDataType

datatype, void *starts, void *ends, long numintervals,
har*

intname,
har *
olname, long
pt, etStatus* status);

Delete; �lter at DM layer

void (*kMakeTabFilter)(kobjHandle objh,
har* tabname,

har* name,
har**
olNames, void* mins, void* maxes, et-

DataType dtype,
har* unit, long nvalues, etStatus* pSta-

tus);

Redesign as generi
 DSS writer

void (*kGetTabFilter)(kobjHandle objh,
har* tabname,

har** a
tual,
har** name,
har**
olNames, void** mins,

void** maxes, etDataType dtype,
har** unit, long* nvalues,

etStatus* pStatus);

Redesign as generi
 DSS reader

void (*kAddBinSpe
)(kobjHandle objh,
har *axisName,

double min,double max,double step,etStatus* status);

Delete; bin at DM layer

void (*kPutWCS)(kobjHandle kobjh,
har* name,
har*

ttype,
har**
ptNames, long*
olNums,
har* unit, et-

DataType dType, void*
rpix, double*
rvals, double*
delt,

long dim, double* params, long nparams,
har system, etSta-

tus* pStatus);

Same?

1
7

void (*kGetWCSNames)(kobjHandle kobjh,
har*** ppstr-

WCSNames, long* numCoords, etStatus* pStatus);

Repla
e with generi
 WCS handle reader

void (*kGetWCSInfo)(kobjHandle kobjh,
har* name,
har**

type,
har** unit,
har***
ptNames,
har* system, long**

olNums, etDataType* dtype, void**
rpix, double**
rvals,

double**
delt, long* dim, double** params, long* nparams,

etStatus* pStatus);

Redesign and
ombine with above

void (*kSetColumnRange)(kobjHandle objh,
har* name,

void* vmin, void* vmax, etStatus* pStatus);

Des
riptor-generi

void (*kGetColumnRange)(kobjHandle objh,
har* name,

void* vmin, void* vmax, etStatus* pStatus);

Des
riptor-generi

void (*kSetColumnBin)(kobjHandle objh,
har* name, void*

vmin, etStatus* pStatus);

Same?

void (*kGetColumnBin)(kobjHandle objh,
har* name,

void* vmin, etStatus* pStatus);

Same?

void (*kSetColumnNull)(kobjHandle objh,
har* name,

void* vmin, etStatus* pStatus);

Des
riptor-generi
?

void (*kGetColumnNull)(kobjHandle objh,
har* name,

void* vmin, etStatus* pStatus);

Des
riptor-generi
?

void (*kSetColumnDes
)(kobjHandle objh,
har* name,

har* des
, etStatus* pStatus);

Des
riptor-generi

void (*kGetColumnDes
)(kobjHandle objh,
har* name,

har* des
, long maxlen, etStatus* pStatus);

Des
riptor-generi

void (*kSetHints)(
har* name,
har* value); Same

void (*kAddRegionFilter)(kobjHandle objh,
har**
pt-

names, void* region, long
pt, etStatus* pStatus);

Delete, �lter at DM layer

void (*kSetTablePref)(kobjHandle objh,
har** names, long

n, etStatus * status);

Same

void (*kGetTablePref)(kobjHandle objh,
har*** names,

long* n, etStatus * status);

Same

long (*kGetNoKeys)(kobjHandle objh, etStatus* status); Same

void (*kKeyPrint)(kobjHandle objh, long keyno,
har* buf,

long maxlen, etStatus* status);

Same?

int (*kNullPrimary) (kdsHandle ds); TBD

1
8

void (*kUpdateFilter)(kobjHandle blo
k,
har* buf); TBD

void (*kGetComment)(kobjHandle objh,
har* name, long

no,
har** tag,
har**
omment, etStatus* status);

Same

void (*kSetArraySize)(k
olHandle
ol, long nvals); Same?

1
9

8 Work pa
kages

Here I des
ribe the
omponents of the DM and the extent of the proposed work. The IRAF-

QPOE kernel is not addressed here; to handle it, the
hanges would be pretty me
hani
al

after doing the FITS kernel. The ASCII kernel
ould be written in parallel with the FITS

kernel rewrite, or left till later.

The main pie
es of work are:

� (A) remove dupli
ation of dm/kernel
a
hed info

� (B) header key parsing and
omposing

� (C) header key
a
hing

� (D) table �ltering

� (E) image axes

� (F) image �ltering

(A) Dupli
ation of dataset, blo
k and des
riptor info: these stru
tures exist at both DM and

kernel layers. The kernel layer stru
tres have some kernel-spe
i�
 info but also dupli
ate

mu
h of the info from the DM layer. I will move the DM stru
tures to the DMI layer at

the bottom, and having both DM and kernel layers a

ess them - either dire
tly or (at some

eÆ
ien
y
ost) via wrapper routines. This will eliminate a lot of
ode that's required to

keep them in syn
, and make it easier to write new kernels. The removal of in
ompatible

terminology (properties for keys, obje
ts for blo
ks) will make the
ode more maintainable,

too.

A typi
al
hange to be made is the method of
losing a blo
k. Currently, the dmBlo
kClose

routine
alls a dmpBlo
kClose routine whi
h does work at the DM layer and also
alls a

kernel->Blo
kClose routine to do kernel-spe
i�
 work. In the new design, dmBlo
kClose will

all kernel->Blo
kClose whi
h will in turn
all dmpBlo
kClose, now at the DMI layer. The

argument to the kernel routine was a dmkBlo
k (kernel blo
k) and is now a full dmBlo
k; the

dmkBlo
k stru
ture is simpli�ed be
ause it no longer needs to dupli
ate and stay in syn
 with

the dmBlo
k stru
ture; and a few lines of
ode in the kernel routine are
hanged to distinguish

between dmkBlo
k and dmBlo
k referen
es. Most of the work is in the repa
kaging and

moving around, rather than in lines of
ode a
tually
hanged.

(B) Header parsing: There is a lot of nasty
ode in dmbasis.
. The problem, as ever, is that

ETOOLS pi
ked apart the
ompound information at the kernel layer - e.g. DTYPE/DVAL

pairs, making it hard to put them ba
k together. This is even worse at key write time,

20

where the
onvention of DTYPE/DVAL should be at the kernel layer and invisible at the

DM layer. Mu
h grief to keep this working in the
urrent design, and it stops me �xing the

header
a
hing problem below. The new design lets the DM work in terms of platoni
 ideal

DM keys, and the fa
t that FITS may use multiple keywords to store them is entirely hidden

at the DM layer as it should be.

(C) Header
a
hing: The problem with editing keywords is that information about keywords

is kept both at the DM and the kernel layer, but
hanges in keyword order are not propagated.

We do want to have a separate kernel header
a
he in FITS, be
ause of the way the di�erent

keywords intera
t with one another. So we need to update both the DM and FITS order at

the same time. This requires
hanges to the kernel interfa
e routine for header keys, whi
h

are already really broken be
ause of the header parsing issues des
ribed above.

(D) Table �ltering: When �ltering, the
urrent design passes a request for one row down

to the kernel; the kernel reads one row and �lters it, and passes the result ba
k up to the

DM, �lling another row in the row bu�er. The bu�er is then mem
py'd to the output.

Instead, I propose to �ll the DM row bu�er dire
tly with data, do the �ltering there and

mark ea
h row as good or bad, and then mem
py the good data row by row to the output.

This will redu
e the number of
alls to CFITSIO, and eliminate a whole set of kernel �lter

infrastru
ture that dupli
ates the DM layer �lters. Testing of these
hanges (see below) may

be split up - �rst put in the infrastru
ture and test that you
an still get data in and out

without �ltering. Then debug the �ltering and test that. Then put ba
k in the hooks to

subspa
es and
oordinates, and test that. At that point, you have really tested all of the

new parts A-D. The image stu� (E,F) is just as important, but is a more (not entirely!)

separable problem.

(E) Image axes: this is bound up with header parsing. The worst problem is the
oordinate

systems. The ETOOLS lega
y is that the information about the individual axes and their

oordinate systems is broken apart and passed up to the DM layer as lists of names, whi
h

then have to be mat
hed up again - at the FITS level we have axis numbers to let us

do this more easily and robustly. The
ode that stit
hes together information about the

di�erent axes is ne
essarily
ompli
ated anyway, as it must support logi
al, physi
al and

world
oordinate systems, and the presen
e or absen
e of them on any parti
ular axis, and

spotting that the presen
e of an RA/De
 world system implies that the physi
al system

must be sky
oordinates even if there aren't any keywords to say so, and other spe
ial
ases.

However, the situation is made even harder in the
urrent
on�guration and the
urrent

ode is one of the most
onfusing and least maintainable parts of the DM. Further, it has

proved impossible to reliably support image �ltering on logi
al and physi
al
oordinates.

The rewrite will allow me to provide this support robustly and leave behind a still ar
ane

but somewhat more maintainable algorithm.

(F) Image �ltering: On
e the new support for image axes is in pla
e, I
an make image

�ltering work properly. This requires minor
hanges to the �ltering
ode, and the move of

21

the �ltering
ode to the DM layer (as for tables).

I propose to develop the new DM in a phased manner. However, the new DM will not have

the
apabilities of the old DM until the �nal phases. Be
ause of the intera
tion of di�erent

omponents of the old design, it would be a lot of wasted work to keep the revised DM fully

fun
tional at every step along the way - it's better to have some things temporarily broken.

Of
ourse, while this is happening, the old DM should remain the version seen by
iaox! At

ea
h phase, spe
i�
 features of the DM will be tested.

The proposed test/putba
k phases are:

Theme Test Capability

Phase A Blo
ks List blo
ks

Phase B/C Keys List header

Phase D1 Table Read List table data

Phase D2 Table Write Copy table (no �lter)

Phase D3 Filter Filter table

Phase D4 Subspa
e/Coords Propagate subspa
e;
he
k
oords

Phase E Images Image data and
oords

Phase F Binning Bin table to image, �lter image

Phase G1 Complete Cleanup, dm
opy/dmlist regression pass

Phase G2 Full Debug Test against CIAO tools, debug

Here is a summary of the
ode
omponents of the DM, and how major the
hanges will be.

Of
ourse this is a bit misleading, sin
e even for the pie
es that say "80% rewrite" mu
h of

the work will be rearranging blo
ks of
ode, or me
hani
ally going through and repla
ing a

pointer to one stru
ture with a pointer to another stru
ture (e.g. kernel blo
k to DM blo
k).

Segments with signi�
ant rewrite are
alled out with an asterisk.

Component Subdire
tory LOC now % rewrite Notes

DM Parser �lter 2000 10 Minor
leanup

DM Subspa
e �lter 9000 10 Minor
leanup

DM Coords
oords 2000 10 Cleanup, Syn
 with kernel

DM Image axes blo
k 1000 80* (A) Major simpli�
ation after new kernel

DM Images des
riptor 500 20 Cleanup

DM Blo
ks blo
k 5000 30* (A) Syn
 with rest of rewrite

DM Bu�er mis
 2000 80* (D) Rewrite table �ltering

DM Keys des
riptor 5000 80* (B) Remove header parsing to kernel

DM Set/Get des
riptor 5000 10 Cleanup

DM Des
rips. des
riptor 2000 50* (C) Add header key stu� from kernel

DM Dataset dataset 600 20 Cleanup, kernel layer
hange

Kertable kertable 500 50* (A) PKI routine API

22

Ker Subsp. ft�lter 2300 80* (D) Move �ltering to DM layer

Ker Coords ft
oords 1700 30* (B,E) New header parsing

Ker Images ftimages 2200 25(*) (F) Move �ltering to DM layer

Ker Blo
ks ftsymtab 1000 70* (A) Rewrite - simplify

Ker Blo
ks ftobje
t 1000 70* (A) Rewrite - simplify

Ker Bu�er fttables 1500 70* (D) Move �ltering to DM layer

Ker Keys ftproplist 4200 40* (B,C) Rework to do more parsing at kernel

Ker Tables fttables 4000 40* (A,D) Don't
a
he info at kernel layer

Ker Dataset ftdataset 500 20 Cleanup, kernel layer
hange

Utils edsutil 5000 40 Cleanup and additions

23

