CXC-DM-003

CXC Data Model

AR

Vol. 3
Data Model Library Architecture

Jonathan McDowell
Chandra X-ray Center
December 27, 2001

Contents

1 Goals

2 New Structure

3 DM functionality

3.1 Kernels and converters L

4 History of DM development
4.1 Development of thecode Lo

4.2 CDR documents. e

4.3 Modifications to the original concept L.

5 The DM public layer

6 The kernel layers

7 The PKI

8 Work packages

11

12

12

20

1 Goals

The current CDM has a lot of useful functionality, but the internals reflect some early
implementation compromises that impede both debugging and adding new abilities. The goal
of this redesign is to generate a CDM2 which has the same interface as the CIAO2.2 CDM
and passes the same regression tests, but has a cleaner internal design with the following
properties:

e Implementation to reflect the original CDM (1994) design, plus modifications due to
lessons learned (see ’historical’ section).

e Possibly add hooks that may be useful in NVO related work. There are no specific
design elements for this yet, but as NVO work gathers steam the DM design will be
reviewed for possible modification.

e Consistent and documented design, maintainable and commented code, so that others
in CXC can maintain the code.

e Stable and public kernel interface so that others in the community can write new
kernels.

2 New Structure

The most important difference is in the layering. In the old structure, kernel routines were
cast in terms that were closer to FITS concepts. Thus, grouping of multiple axes and
coordinates had to be stitched back together at the DM layer. The new kernel will operate
in terms of the DM structures.

The first design decision is to choose between two models of kernel interaction:

e Allow kernel routines to directly fill DM structures, for maximum efficiency.

e Retain a strict layering in which DM structures are filled only via interface routines.
This makes it easier for others to write kernels.

I really want it to be easy to write kernels, so I chose the second. However, in our new kernel
interface, we will call DM layer routines, as opposed to the old rule in which kernel routines
did not call the DM. This implies a new layer diagram.

The original DM layer diagram was:

| ETOOLS I
ke 1 | kR |
| CcFITSIO | | TRAF |
___________] I ________
| Region | EDSUTIL | WCSLIB|

In the first DM rewrite, the ETOOLS layer was removed. In the new model, we will have
the following layer diagram:

| CFITSIO | PKI | | PKI | IRAF |

| Region | DM Utils (DMU) | WCSLIB|

In the old model, both the kernels and the ETOOLS layer made calls to the EDSUTIL utility
routines which contained a grabbag of generic algorithms and X-ray-astronomy conventions.
In this model, the kernels call a Public Kernel Interface (PKI) which in turn access a DM
Internals (DMI) layer. The DM public layer will call both PKI routines and private DM
Internals routines. The PKI routines are simply the public part of the DM Internals interface
and access the same internal structures. In order to make it easy for people to write new
kernels which put and get to/from the internal structures, the PKI needs to be well defined
and well matched to these structures, but the DM public layer, which needs to a different
kind of bookkeeping and to perform efficient filtering, may need more direct access routines
that are not suitable for public use, so it isn’t restricted to the PKI.

The small number of EDSUTIL routines and existing kernel routines which are generic will
be replaced by a DM Utils layer.

A CXC Tool application has further relevant structure:

| CXC Tool |
| DMpublic laer | DMILIB | STKLIB | PARAM | DSLIBs |
Eo | taken 1 iobsumsl
| oPTso | ekr | @Bk | maF
T o mermae 1

| Region | DM Utils | WOSLIBI

In this diagram, DSLIBs represent the whole set of CXCDS libraries. The DM is separately
distributable, and its Core Tools (e.g. dmlist, dmcopy) are being kept as independent as
possible of the rest of the CXCDS. Therefore, the DM Core Tools will call the DSLIBs only
through the PARAM library. In the current separate distribution, which is not advertised
but has been made available to a limited number of users (J. Davis/MIT; Palermo group,
who are using the Fortran wrappers), the current CXC PARAM library is replaced by an
older version which is not dependent on the other CXCDS libraries, and I will lobby for such
a library being formally maintained.

The DMTLIB is used for several DM tools. In the new design, the DMTLIB is expected to
be fully absorbed into the DM public layer.

The STKLIB handles stacks. The status of this library’s relationship to the DM also needs
to be reviewed. Because of the existing code base, I propose that the STKLIB remain as
is, but new DM routines be provided to open and manipulate stacks of datasets; these new
routines would be phased in slowly. These new routines may not be implemented in the first
(CIAO 3.0) phase of the redesign; the main impact on lower layers of the DM is that (1)
we may want to have a mode in which you have a ’dmmerge on the fly’, so that EOF on a
table silently triggers reading from the next table in the dataset stack (but this would imply
incorporating all the header merging machinery too) and (2) we want to have the ability to
apply a stack of filters to a file without reopening it. This could be done either by a filter
design which assumes you are always working with stacks of datasets, or by making the user
open a dataset unfiltered and providing an API routine to apply a filter to a row. The former
approach may imply adding a lot of extra API get/put routines for the multiple-filter case.
The latter approach causes much less grief to the existing API and I propose that solution.

3 DM functionality

All routines in the current DM API will remain, and all current functionality will be sup-
ported.

The following DM limitations will be addressed in the redesign:

e Header keyword ordering. There are some limitations on accessing keywords by number
that prevent the keyword insertion routines in dmhedit from functioning correctly. This
is because of the convoluted way that the current DM layer interacts with the kernels
and should be easy to fix in a cleaner design.

e Header keyword grouping. We add the ability to define and manipulate named groups
of keywords, to reflect the substructure in our headers.

e Column deletion and insertion. This will always be inefficient on FITS files, but should
be supported nevertheless.

e Row insertion and deletion. This will require some modification of the kernel interface,
and will also be intrinsically inefficient for FITS.

e Support for explicit buffer flushing. I will also investigate providing the ability to inhibit
flushing (for PRISM editor application) but I'm not promising, as this is intrinsically
problematic.

e Improved and documented error handling

e Review of functionality now handled by [opt ...] syntax; complete documentation of
[opt ...] syntax.

e Improved documentation of bit handling. Support for easier syntax for bit filtering
(this is a separate enough problem that it does not have to form part of the initial
redesign).

e New functions to manipulate data subspace, deleting its members and testing whether
a row is within the subspace of another block.
e Useful wrapper routines to handle primary header handling.

The following future upgrades are planned:

e The ASCII kernel is a high priority and a separate document will describe this.

e Very preliminary ideas for an IDL kernel, which would allow DM filtering and dataset
manipulation from the IDL command line, have been discussed with V. Kashyap (CfA)
and D. Lenz (RS Inc.). We have established a basic approach and some design drivers
(memory management in IDL wrappers, use of the CALL EXTERNAL routine to call
DM C code).

e Shared memory and/or pipe interface. CFITSIO and XMM-SAS report limited success
in usage of shared memory applications to date, but it seems likely that some form of
shared memory or direct bytestream kernel will be of use in the future.

e Integrated support for associating uncertainties with columns.

3.1 Kernels and converters

It’s been suggested that we abandon the kernel paradigm, work purely in FITS, and have
separate (other format) to-and-from DM converters. Since we want to keep FITS and the
DM cleanly layered, there is actually not much design difference implied. The QPOE and
ASCII kernels would be replaced with QPOE-DM and ASCII-DM converters, which would
contain much of the same code as the kernels. The FITS kernel would stay as is. What we’d
lose is the ability to work with ASCII files and mix and match generic unix and DM tools;
we’d have to keep converting from FITS back to ASCII to apply ASCII methods to the data.
We'd also lose the option to develop a kernel for a format which supports DM constructs
that are not fully supported in FITS.

I remain convinced that support for the kernel paradigm is the right thing to do for the long
run. That doesn’t stop users writing a converter from their favorite data format to FITS
and then running the DM tools in purely FITS mode; that’s an entirely legitimate thing to
do.

4 History of DM development

4.1 Development of the code

The initial concept of the DM was elaborated in 1994. At that point, the CXCDS concept
involved a core IRAF component, and the DM offered a path to also support FITS event
lists. During the PDR/CDR process, the decision was made to carry out multiple object-
oriented design cycles, first with D. van Stone and then with P. Patsis, rather than develop
prototype code. This limited the usefulness of the design process. After CDR, it was decided
to try and build the DM by reusing the much more limited ETOOLS library already under

8

development. This caused considerable awkwardness in the design and made it deviate
significantly from the original concept. Frequent developer turnover made progress very
slow except of course for the period when Mike Noble was lead, and thanks to him the
DM did successfully support CXCDS development starting in 1998, and the DM tools were
welcomed by the community following the public CIAO release in 1999. I then became the
developer as well as the science lead, and removed an entire layer from the design, deleting
over 10K lines of code. Nevertheless, the existing design still does not fully map to the
original concept and is structured in a way that’s hard to add new features. Thus, a major
redesign is critical to provide a robust DM for long-term maintenance.

In the longer term, the development of an NVO protocol may replace parts of the DM.
Nevertheless, having a clean DM will be an essential basis for my own analysis of the NVO
issues.

4.2 CDR documents

Section 4.7.7 of DS01 describes the data analysis APIL. In the language of section 4.7.7, the
translation wrappers map to the DM Fortran wrappers, the data manipulation libraries map
to the DM public and internal layers, and the DM virtual file syntax implements the API
mini-language for describing generic analysis objects. The ’'adaptation wrappers’ do not
exist (I prototyped wrappers for IRAF but it was decided that DS could not support the
overhead of supporting them) but may arise if the IDL kernel is ever implemented. In Fig
4.7-14 the kernels were the IRAF IMIO and the TBTABLES kernels. The IRAF kernel is
still supported; the TBTABLES kernel was abandoned as ST Tables can be replaced in IRAF
with FITS, which has become much more important to the community in the interim. The
‘generic data model library’ and ’science data model library’ layers have been merged, since
there was no added value from the lower layer (I think it was code for the ETOOLS layer).
The DDF layer is another name for the DM kernel layer. The addition of further kernels is
compromised in the current design by the poor match of the current kernel API to the DM
fundamental design.

The promised features of the Data Model in 4.7.7 were

e 1D and 2D filtering - implemented
e stacking - supported in stack library
e coordinate systems - supported

e coordinate conversions - supported

e uncertainties - not implemented; a harder problem than anticipated.

e The instantiation of data products in different formats = supported

e support for preferred columns - supported, although most data products don’t make
full use of it.

e interpolation support - as described, implemented in the CIAO 2.2 dmjoin tool.
e mission independence and genericity of the DM - supported

e ’quantity’ support - implemented as DM ’descriptors’

e QPOE support - implemented, although not as fully as FITS

e FITS support - implemented

e EDF support - concept abandoned, merged with QPOE kernel

e ST Tables support - not currently implemented

e IRAF images - implemented

e The shared memory kernel has not yet been implemented.

e OTS libraries: IRAF libraries used; TBTables, PROS, XRAY, EVTIO libraries not
used.

4.3 Modifications to the original concept

The discussion in DS01 was not a direct reflection of the original DM design; it reflected the
ETOOLS code reuse compromise.

In terms of the original design, generic (vector array) descriptors have now been implemented,
but the simple cases (scalars, non-array vectors) often have separate code since they were
coded first; in many cases that code could be simplified by treating them as special cases of
the generic.

There are two main changes I feel are needed to the original DM concept: a way to modify
data subspaces to drop quantities when their filters get too complicated, and a modification
of the implementation of ‘element types’, which were to be used to handle uncertainties.

When filtering, there typically comes a point in data analysis where propagating parts of
the history is no longer interesting. I therefore propose a new syntax option to allow editing
of the data subspace. For instance, you may want to apply the time filter for CCD4 to a
file without also applying the ccdid=4 filter. This syntax will be equivalent to the [cols ...]
syntax, but for the columns of the data subspace.

10

Secondly, I now propose to treat complicated element types using the existing vector col-
umn mechanism, rather than add an extra layer of structure. The DM'’s perceived to be
complicated enough without adding further dimensions.

Apart from these changes, the 1994 DM document continues to reflect my view of the correct
low-level generic interface.

5 The DM public layer

The DM public layer (DMP) API will be largely unchanged, although DMTLIB routines
will be added.

The DM public layer’s internal structures will be largely unchanged. However, the PKI will
now deal with the mapping from DM structures to kernel structures - previously, the DM
layer split things up into kernel-level (actually ETOOLS) concepts and then passed them to
the kernel interface. In the new design, it is the kernel’s responsibility to translate between
DM and kernel concepts.

Some code that was previously in the kernels will now be in the DM layer. Specifically,
the row filtering code will be at the DM layer; this will cause minimal performance hit,
if any. This will avoid duplicating the filtering code in the kernels, duplicating all the
filtering information (ranges and regions) in the kernels, and allows more intelligence in the
filtering (easier access to high level info about the objects being filtered). Performance will
be improved by having the kernels return more than one row at a time when filtering. At
present, when filtering, one row at a time is returned to the top layer. In the new design,
a buffer of rows will be returned and an index will be used to mark which rows are good.
A memory copy is already done when returning multiple rows in an API call, so there is no
downside to this approach and the ability to call FITSIO to return multiple rows at once
should result in a measurable speedup. It will be recalled that the current row filtering
code was written under heroic time pressure by Mike and was always intended as a stop-gap
approach; I have done some rework since then but the original skeleton is still constraining
us.

In contrast, much of the code that was in the DM layer for composing vector columns and
basis keywords will now be relegated to the DM internals layer and called by the kernels. This
avoids the problems caused when the kernels pick information apart in their layer which then
has to be stitched back together in the DM layer. In general this fits with the philosophical
approach of fitting data into the DM concepts as soon as possible and having the internal
work done in terms of those concepts, which will make a lot of the internals more robust.

The coordinate and DSS manipulation code will largely remain at the DMP layer, although

11

the writing and reading parts of the code will be split between the KER and DMI layers for
the reasons mentioned above for vectors.

6 The kernel layers

The kernel layer internal structures will be altered to avoid caching DM object values a second
time. The internal structures will be limited to containing kernel-specific information.

To aid in copying objects, the different kernels will share a common handle type. Some PKI
routines will accept a dmKernelData handle containing kernel-specific data for an object.
The kernel routines will test the common kernel_id member of this structure, and if it’s the
right kernel, the data will be copied, otherwise it will be ignored. For example, FITS ASCII
and binary tables both map to a DM table. In the new design, the block will have a kernel-
specific pointer that says ”I was originally a FITS ASCII Table”. If it’s copied to a QPOE,
that information will be ignored, but if it’s copied to another FITS file, it will be picked up
and (unless overridden by a specific directive) the resulting FITS file will be made an ASCII
table instead of the default binary kind. This provides a mechanism for making sure that a
copy of a FITS file to a FITS file preserving as much of the original file’s idiosyncrasies as
possible, while retaining the capability to copy it to a QPOE file in a clean way.

7 The PKI

Here are the existing Kertable routines and their PKI analogs. The names ’Object’ and
"Property’ will be changed to 'Block’ and 'Key’ to make the DM nomenclature consistent.

Data-type families will be made type-generic, so that
kPutProperty_double(block, name, double val, status)
becomes
kPutKey(block, name, dmDOUBLE, void* val, status).

This reduces the number of separate PKI routines.

Some descriptor-specific routines will be made descriptor-generic, so that kSetColumnUnits
becomes kSetDescriptorUnit and works to set the units for keys and columns and coords.

12

This basically moves a switch statement into the kernels, but decreases the number of kernel
routines; this decision may be revisited.

Some routines that access by name will be changed to access by number or handle, so
that renaming the object or (in some cases) multiple objects with the same name will not
cause problems. Attention will be given to make sure that this doesn’t cause new problems
when reordering objects (which is not well supported in the current design anyway): careful
distinction will be made between raw object order and virtual-file object order.

13

4!

etBool (*kAccessDataset) (char *dsname);

etBool (*kCanCreateDataset)(char® dsname);

void (*kCreateDatasetFunc) (char *dsname, kdsHandle *kds,
etStatus *status);

void (*kDeleteDatasetFunc) (char *dsname, etStatus *sta-
tus);

void (*kRenameDatasetFunc) (char *dsname, char *newd-
sname, etStatus *status);

void (*kOpenDataset) (char *dsname, etBool update, kd-
sHandle *kds, etStatus *status);

void (*kCloseDatasetFunc) (kdsHandle kds, etStatus *sta-
tus);

void (*kFlushDatasetFunc) (kdsHandle kds, etStatus *sta-
tus);

etBool (*kAccessObjectFunc) (kdsHandle kds, char *obj-
name);

void (*kCreateObjectFunc) (kdsHandle kds, char *objname,
edsObjType objtype, kobjHandle *kobj, etStatus *status);
void (*kGetObjectNamesFunc) (kdsHandle kds, char ***ob-
jnames, long *nobject, etStatus *status);

void (*kGetOpenObjectName) (kobjHandle kobj,char **ob-
jname,etStatus *status);

void (*kGetObjectTypeFunc) (kdsHandle kds, char *obj-
name, edsObjType *objtype, etStatus *status);

void (*kDeleteObjectFunc) (kdsHandle kds, char *objname,
etStatus *status);

void (*kRenameObjectFunc) (kdsHandle kds, char *obj-
name, char *newobjname, etStatus *status);

edsObjType (*kOpenObjectAs) (kdsHandle kds, char *ob-
jname, edsObjType eObject, kobjHandle *kobj, etStatus
*status);

void (*kCloseObjectFunc) (kobjHandle kobj, etStatus *sta-
tus);

TBD

TBD

Same?

Same?

Same?

Same?

Same?

Same?

Not needed

Same

Replace with GetNoBlocks and GetBlockNameByNo?
Change to access by No
Same

Change to access by No

Change to access by No

TBD

Same

a1

void (*kFlushObjectFunc) (kobjHandle kobj, etStatus *sta-
tus);

etBool (*kAccessProperty) (kobjHandle kobjh, char*);

void (*kDeleteProperty) (kobjHandle kobjh, char*, etSta-
tus*);

void (*kPutProperty<type>) (kobjHandle kobjh, char*
propname, <type> val, etStatus* status);

void (*kGetProperty<type>) (kobjHandle kobjh, char*
propname, <type>* val, etStatus* status);

void (*kPutPropertyComment) (kobjHandle kobjh, char*
propname, char* comm, etStatus* status);

void (*kGetPropertyComment) (kobjHandle kobjh, char*
propname, char** comm, etStatus* status);

void (*kGetPropertyNames) (kobjHandle kobjh, char***
propnames, long* numprop, etStatus* status);

void (*kGetPropertyType) (kobjHandle kobjh, char* prop-
name, etDataType* proptype, etStatus* status);

void (*kGetNewKWIndex) (kobjHandle kobj, char*
strIndexKey, long™* n, etStatus* pStatus);

etBool (*kGetKWIndex) (kobjHandle kobj, char* strKW-
Name, char* strIndexKey, long* n, etStatus* pStatus);
char* (*kET2KernelDatatype) (etDataType etType, etSta-
tus™® pStatus);

etDataType (*kKernel2ETDatatype) (char* strKernel-
Datatype, etStatus™ pStatus);

void (*kTotalTableRows) (kobjHandle kobjh, long* num-
rows, etStatus™® status);

void (*kTotalTableColumns) (kobjHandle kobjh, long* num-
rows, etStatus™® status);

etBool (*kAccessColumn) (kobjHandle kobjh, char* col-
name);

Same

TBD
TBD

Add desc and unit and comment arguments

Make type-generic
Add extra info, make type-generic

Make descriptor-generic

Make descriptor-generic
Replace with access by number
Access by handle

Deleted, done within kernel
Deleted, done within kernel
Deleted, work in DM types
Deleted

Same

Same

Not needed

91

void (*kCreateColumn) (kobjHandle table,char *col-
name,etDataType datatype, long length, long string length,
long* axlen, long naxes, char *units, char *format, int var,
char* desc, kcolHandle *col, etStatus *status);

void (*kDeleteColumn) (kobjHandle kobj, char* colname, et-
Status *status);

void (*kRenameColumn)(kobjHandle table, char* colname,
char* newcolname, etStatus* status);

void (*kOpenColumn) (kobjHandle table, char *colname,
kcolHandle *col, etStatus *status);

void (*kOpenColumnByPosition) (kobjHandle table, long
colpos, kcolHandle *col, etStatus *status);

void (*kGetOpenColumnName) (kcolHandle col, char** str,
etStatus* status);

void (*kGetColumnType) (kobjHandle table, char *colname,
etDataType *coltype, etStatus *status);

void (*kGetColumnLength) (kobjHandle table, char *col-
name, long *length, long** axlen, long™ naxes, etStatus *sta-
tus);

void (*kGetColumnStringLength) (kobjHandle table, char
*colname, long *string length, etStatus *status);

void (*kGetColumnUnits) (kobjHandle table, char *colname,
char **units, etStatus *status);

void (*kGetColumnFormat) (kobjHandle table, char *col-
name, char **format, etStatus *status);

void (*kGetColumnNames) (kobjHandle table, char***
names, long* num, etStatus* status);

void (*kSetColumnUnits)(kobjHandle table, char* colname,
char* format, etStatus* status);

void (*kSetColumnFormat)(kobjHandle table, char* col-
name, char* format, etStatus* status);

void (*kGetRows)(long rownum, kcolHandle* colhandles,
long numcols, long buflen, kcolBuffer colbuffer, long* nread,
int invert, etStatus*® status);

Same?

Access by handle

Access by handle

Access by handle, name table held at DMP layer
Combined with routine above

Descriptor-generic

Descriptor-generic

Descriptor-generic

Descriptor-generic
Descriptor-generic
Descriptor-generic
Not needed

Descriptor-generic
Descriptor-generic

To be redesigned

L1

void (*kPutRows)(long rownum, kcolHandle* colhandles,
long numcols, long buflen, kcolBuffer colbuffer, long nwrite,
etStatus* status);

void (*kGetAxLen)(kobjHandle, long, long*, etStatus™);
void (*kGetNDim)(kobjHandle, long*, etStatus™);

void (*kGetImageType)(kobjHandle, etDataType*, etSta-
tus*);

void (*kGetSection)(kobjHandle, long*, long*, long, void*,
int,etStatus*);

void (*kSetAxLen)(kobjHandle, long, long, etStatus*);

void (*kSetNDim)(kobjHandle, long, etStatus™®);

void (*kSetImageType)(kobjHandle, etDataType, etSta-
tus*);

void (*kPutSection)(kobjHandle, long*, long*, long, void*,
etStatus®);

void (*kAddIntervalToFS)(kobjHandle table, etDataType
datatype, void *starts, void *ends, long numintervals, char*
intname, char *colname, long cpt, etStatus® status);

void (*kMakeTabFilter)(kobjHandle objh, char* tabname,

** colNames, void* mins, void* maxes, et-

char* name, char
DataType dtype, char* unit, long nvalues, etStatus* pSta-
tus);

void (*kGetTabFilter)(kobjHandle objh, char* tabname,
char** actual, char** name, char** colNames, void** mins,
void** maxes, etDataType dtype, char** unit, long* nvalues,
etStatus® pStatus);

void (*kAddBinSpec)(kobjHandle objh, char *axisName,
double min,double max,double step,etStatus* status);

void (*kPutWCS)(kobjHandle kobjh, char* name, char*
ttype, char** cptNames, long* colNums, char* unit, et-
DataType dType, void* crpix, double* crvals, double* cdelt,
long dim, double* params, long nparams, char system, etSta-
tus™® pStatus);

To be redesigned

Descriptor-generic
Descriptor-generic
Descriptor-generic
Same?
Descriptor-generic
Descriptor-generic
TBD

Same?

Delete; filter at DM layer

Redesign as generic DSS writer

Redesign as generic DSS reader

Delete; bin at DM layer

Same?

]!

void (*kGetWCSNames)(kobjHandle kobjh, char*** ppstr-
WCSNames, long* numCoords, etStatus* pStatus);

void (*kGetWCSInfo)(kobjHandle kobjh, char* name, char**
type, char** unit, char*** cptNames, char* system, long**
colNums, etDataType* dtype, void** crpix, double** crvals,
double** cdelt, long* dim, double** params, long* nparams,
etStatus® pStatus);

void (*kSetColumnRange)(kobjHandle objh, char* name,
void* vmin, void* vmax, etStatus® pStatus);

void (*kGetColumnRange)(kobjHandle objh, char* name,
void* vmin, void* vmax, etStatus* pStatus);

void (*kSetColumnBin)(kobjHandle objh, char* name, void*
vmin, etStatus* pStatus);

void (*kGetColumnBin)(kobjHandle objh, char* name,
void* vmin, etStatus® pStatus);

void (*kSetColumnNull)(kobjHandle objh, char* name,
void* vmin, etStatus* pStatus);

void (*kGetColumnNull)(kobjHandle objh, char* name,
void* vmin, etStatus* pStatus);

void (*kSetColumnDesc)(kobjHandle objh, char* name,
char* desc, etStatus* pStatus);

void (*kGetColumnDesc)(kobjHandle objh, char* name,
char* desc, long maxlen, etStatus® pStatus);

void (*kSetHints)(char® name, char*® value);

void (*kAddRegionFilter)(kobjHandle objh, char** cpt-
names, void* region, long cpt, etStatus™ pStatus);

void (*kSetTablePref)(kobjHandle objh, char** names, long
n, etStatus * status);

void (*kGetTablePref)(kobjHandle objh, char*** names,
long* n, etStatus * status);

long (*kGetNoKeys)(kobjHandle objh, etStatus* status);
void (*kKeyPrint)(kobjHandle objh, long keyno, char* buf,
long maxlen, etStatus™ status);

int (*kNullPrimary) (kdsHandle ds);

Replace with generic WCS handle reader

Redesign and combine with above

Descriptor-generic
Descriptor-generic
Same?

Same?
Descriptor-generic?
Descriptor-generic?
Descriptor-generic
Descriptor-generic

Same
Delete, filter at DM layer

Same
Same

Same
Same?

TBD

61

void (*kUpdateFilter)(kobjHandle block, char* buf);

void (*kGetComment)(kobjHandle objh, char* name, long
no, char** tag,char** comment, etStatus* status);

void (*kSetArraySize)(kcolHandle col, long nvals);

TBD
Same

Same?

8 Work packages

Here I describe the components of the DM and the extent of the proposed work. The IRAF-
QPOE kernel is not addressed here; to handle it, the changes would be pretty mechanical
after doing the FITS kernel. The ASCII kernel could be written in parallel with the FITS
kernel rewrite, or left till later.

The main pieces of work are:

e (A) remove duplication of dm/kernel cached info

e (B) header key parsing and composing

)
C) header key caching
)

D) table filtering

image axes

(
(
(
(
(E)
(F) image filtering

(A) Duplication of dataset, block and descriptor info: these structures exist at both DM and
kernel layers. The kernel layer structres have some kernel-specific info but also duplicate
much of the info from the DM layer. I will move the DM structures to the DMI layer at
the bottom, and having both DM and kernel layers access them - either directly or (at some
efficiency cost) via wrapper routines. This will eliminate a lot of code that’s required to
keep them in sync, and make it easier to write new kernels. The removal of incompatible
terminology (properties for keys, objects for blocks) will make the code more maintainable,
too.

A typical change to be made is the method of closing a block. Currently, the dmBlockClose
routine calls a dmpBlockClose routine which does work at the DM layer and also calls a
kernel->BlockClose routine to do kernel-specific work. In the new design, dmBlockClose will
call kernel->BlockClose which will in turn call dmpBlockClose, now at the DMI layer. The
argument to the kernel routine was a dmkBlock (kernel block) and is now a full dmBlock; the
dmkBlock structure is simplified because it no longer needs to duplicate and stay in sync with
the dmBlock structure; and a few lines of code in the kernel routine are changed to distinguish
between dmkBlock and dmBlock references. Most of the work is in the repackaging and
moving around, rather than in lines of code actually changed.

(B) Header parsing: There is a lot of nasty code in dmbasis.c. The problem, as ever, is that
ETOOLS picked apart the compound information at the kernel layer - e.g. DTYPE/DVAL
pairs, making it hard to put them back together. This is even worse at key write time,

20

where the convention of DTYPE/DVAL should be at the kernel layer and invisible at the
DM layer. Much grief to keep this working in the current design, and it stops me fixing the
header caching problem below. The new design lets the DM work in terms of platonic ideal
DM keys, and the fact that FITS may use multiple keywords to store them is entirely hidden
at the DM layer as it should be.

(C) Header caching: The problem with editing keywords is that information about keywords
is kept both at the DM and the kernel layer, but changes in keyword order are not propagated.
We do want to have a separate kernel header cache in FITS, because of the way the different
keywords interact with one another. So we need to update both the DM and FITS order at
the same time. This requires changes to the kernel interface routine for header keys, which
are already really broken because of the header parsing issues described above.

(D) Table filtering: When filtering, the current design passes a request for one row down
to the kernel; the kernel reads one row and filters it, and passes the result back up to the
DM, filling another row in the row buffer. The buffer is then memcpy’d to the output.
Instead, I propose to fill the DM row buffer directly with data, do the filtering there and
mark each row as good or bad, and then memcpy the good data row by row to the output.
This will reduce the number of calls to CFITSIO, and eliminate a whole set of kernel filter
infrastructure that duplicates the DM layer filters. Testing of these changes (see below) may
be split up - first put in the infrastructure and test that you can still get data in and out
without filtering. Then debug the filtering and test that. Then put back in the hooks to
subspaces and coordinates, and test that. At that point, you have really tested all of the
new parts A-D. The image stuff (E,F) is just as important, but is a more (not entirely!)
separable problem.

(E) Image axes: this is bound up with header parsing. The worst problem is the coordinate
systems. The ETOOLS legacy is that the information about the individual axes and their
coordinate systems is broken apart and passed up to the DM layer as lists of names, which
then have to be matched up again - at the FITS level we have axis numbers to let us
do this more easily and robustly. The code that stitches together information about the
different axes is necessarily complicated anyway, as it must support logical, physical and
world coordinate systems, and the presence or absence of them on any particular axis, and
spotting that the presence of an RA/Dec world system implies that the physical system
must be sky coordinates even if there aren’t any keywords to say so, and other special cases.
However, the situation is made even harder in the current configuration and the current
code is one of the most confusing and least maintainable parts of the DM. Further, it has
proved impossible to reliably support image filtering on logical and physical coordinates.
The rewrite will allow me to provide this support robustly and leave behind a still arcane
but somewhat more maintainable algorithm.

(F) Image filtering: Once the new support for image axes is in place, I can make image
filtering work properly. This requires minor changes to the filtering code, and the move of

21

the filtering code to the DM layer (as for tables).

I propose to develop the new DM in a phased manner. However, the new DM will not have
the capabilities of the old DM until the final phases. Because of the interaction of different
components of the old design, it would be a lot of wasted work to keep the revised DM fully
functional at every step along the way - it’s better to have some things temporarily broken.
Of course, while this is happening, the old DM should remain the version seen by ciaox! At
each phase, specific features of the DM will be tested.

The proposed test/putback phases are:

Theme Test Capability
Phase A Blocks List blocks
Phase B/C Keys List header
Phase D1 =~ Table Read List table data
Phase D2 Table Write Copy table (no filter)
Phase D3 Filter Filter table
Phase D4 Subspace/Coords Propagate subspace; check coords
Phase E Images Image data and coords
Phase F Binning Bin table to image, filter image
Phase G1 =~ Complete Cleanup, dmcopy/dmlist regression pass
Phase G2 Full Debug Test against CIAO tools, debug

Here is a summary of the code components of the DM, and how major the changes will be.
Of course this is a bit misleading, since even for the pieces that say ”80% rewrite” much of
the work will be rearranging blocks of code, or mechanically going through and replacing a
pointer to one structure with a pointer to another structure (e.g. kernel block to DM block).
Segments with significant rewrite are called out with an asterisk.

Component Subdirectory LOC now % rewrite Notes

DM Parser filter 2000 10 Minor cleanup

DM Subspace filter 9000 10 Minor cleanup

DM Coords coords 2000 10 Cleanup, Sync with kernel

DM Image axes block 1000 80* (A) Major simplification after new kernel
DM Images descriptor 500 20 Cleanup

DM Blocks block 5000 30* (A) Sync with rest of rewrite

DM Buffer misc 2000 80* (D) Rewrite table filtering

DM Keys descriptor 5000 80* (B) Remove header parsing to kernel
DM Set/Get descriptor 5000 10 Cleanup

DM Descrips. descriptor 2000 50%* (C) Add header key stuff from kernel
DM Dataset dataset 600 20 Cleanup, kernel layer change
Kertable kertable 500 50%* (A) PKI routine API

22

Ker Subsp.
Ker Coords
Ker Images
Ker Blocks
Ker Blocks
Ker Buffer
Ker Keys
Ker Tables
Ker Dataset
Utils

ftfilter
ftcoords
ftimages
ftsymtab
ftobject
fttables
ftproplist
fttables
ftdataset
edsutil

2300
1700
2200
1000
1000
1500
4200
4000
500

5000

80*
30*
25(%)
70*
70*
70*
40*
40*
20

40

23

D) Move filtering to DM layer
,E) New header parsing
) Move filtering to DM layer
A) Rewrite - simplify
A) Rewrite - simplify
D) Move filtering to DM layer
B,C) Rework to do more parsing at kernel
(A,D) Don’t cache info at kernel layer
Cleanup, kernel layer change
Cleanup and additions

B
F

(
(
(
(
(
(
(

