
Filtering Syntax in the ASC Data Model

SDS-6.0

Jonathan McDowell, Antonella Fruscione, Aneta Siemiginowska, Bill Joye

February 26, 1998

Contents

1 Introduction 3

1.1 Summary . 3

1.2 Changes . 3

1.3 Intent . 3

1.4 Implementation strategy . 4

2 Examples 4

2.1 Simple �ltering . 4

2.2 Column selection and renaming . 5

2.3 Filtering on an external �lter . 6

2.4 Filtering on row number . 6

2.5 Control over data subspace . 7

2.6 Filtering on external tables . 7

3 Virtual images 8

3.1 Basic syntax . 8

3.2 IRAF notation . 8

3.3 Binning . 9

1

4 General syntax 10

4.1 Summary of syntax . 10

5 Detailed speci�cation 11

5.1 Overall syntax . 11

5.2 Base dataset . 12

5.3 Block identi�er . 13

5.4 Filter-command . 14

5.5 Names and renaming in �lter commands and select/bin commands . 15

5.6 Range �lters . 16

5.7 Image sections . 17

5.8 Relational �lters . 18

5.9 Region �lters . 18

5.10 Functional �lters . 19

5.11 Select command . 20

5.12 Binning command . 21

5.13 Output command . 22

2

1 Introduction

1.1 Summary

This document de�nes the `virtual table' or `virtual datablock' syntax used by the ASC data model.

The virtual table syntax allows a single character string to de�ne one ASC datablock in terms of

another, related one. Speci�cally, certain rows and columns of the `base' datablock are selected

to form the `virtual' datablock. ASC data model I/O operations are performed on the virtual

datablock; the calling program only has knowledge of the virtual datablock, with the base datablock

visible only to the internals of the data model subroutine library. There are two kinds of virtual

datablock: the virtual table and the virtual image (see the ASC Data Model design document for

the de�nition of concepts used in this document). The distinction between a virtual table and

virtual image speci�cation is in the calling routine; the same syntax may specify either a table or

an image depending on which routine is parsing it (which application the string is being fed to). In

some cases an ASC library program may open a virtual table using a base image �le, or a virtual

image using a base table �le.

The �rst sections of this document give examples of the syntax with some explanation, but are

not comprehensive. A full de�nition of the syntax is given in the �nal section of the document,

which should be treated as the de�nitive explanation.

1.2 Changes

Jul 22: Changed SELECT command to COLUMNS, since in database contexts the word SELECT

implies a row selection and not a column selection.

1.3 Intent

The syntax is largely inspired by the IRAF/PROS �ltering, regions, image section, and blocking

capability. We have added intensity �ltering from XSELECT and relational �ltering and column

selection from TTOOLS. From MIDAS we plan to add �lter stacking capabilities but that isn't in

the current version. We have attempted to retain as much as possible of the PROS �ltering syntax

to keep it familiar to users of that system. We have also attempted to integrate the regions syntax

with it and to add new capabilities in a natural way. We've also tried to keep it compact.

The syntax consists of a string with quali�ers surrounded by square parentheses, thus

a[b][c][d][e]

Each group within square parentheses has a di�erent meaning; we could have avoided some of

these parentheses and replaced them with spaces, which would have been in keeping with our desire

for compactness, but we feel that the risk of getting a valid but unintended string with a single

mistype was too high, and the clear `phrasing' makes the intent much more readable.

3

1.4 Implementation strategy

For the initial release of the data model, syntax requiring access to more than one dataset or

datablock at a time will be ignored (see `External Tables'). The functional �lter capability de�ned

below will not be supported.

2 Examples

Dataset names are case sensitive. All other names are case-insensitive for matching, but case-

sensitive for output. (In other words, if you ask to read a quantity evENts, the software will

successfully �nd the table EVENTS; but if you ask for an output table to be named evENts, that

is exactly what it will be named.)

2.1 Simple �ltering

The simplest case of a virtual datablock is the name of a dataset:

dataset name

This de�nes the virtual datablock to be a complete base datablock, the �rst datablock in the

given dataset.

For analogy with FTOOLS, we provide the following syntax to access the nth datablock in the

dataset:

dataset name[n]

where n is a non-negative integer. Example:

rh1012.fits[2]

accesses the 2nd ASC datablock in the �le rh1012.�ts. Note that in FTOOLS this syntax would

refer to the 3rd Header Data Unit (HDU); in a FITS �le consisting only of generic BINTABLEs,

this would be the same as the 2nd ASC datablock (since the null primary HDU would be lumped

with the �rst BINTABLE extension), but in more complicated cases the FITS HDU number and

the ASC datablock number may not be simply related.

A friendlier syntax for accessing a speci�c datablock is:

dataset name[block name]

However, ASC datablocks whose names consist only of digits cannot be accessed in this way if

the corresponding number is less than the number of datablocks in the dataset (the numeric syntax

will win over the name syntax in this case; i.e., dataset name[2] will look for the 2nd block and not

for a block named "2".) We hope that no-one will name datablocks using low integers anyway.

We select rows by

4

dataset name[name=min:max,min:max,min:max, name=min:max,min:max...]

for example:

rh1012.fits[pha=1:20,50:90,time=100:200,500:900]

The columns may also be accessed by column number: e.g.

rh1012.fits[#1=1:20,50:90,#5=100:200,500:900]

2.2 Column selection and renaming

We can select columns from a table datablock by

dataset name[columns column-list]

for example

rh1012.fits[columns detpos,pha,time]

We can rename columns in the output table:

rh1012.fits[columns pi=pha,time]

which takes the old column called pha and renames it pi.

In the select quali�er, there are two special reserved column names: #all and #none, with

synonyms * and -. Thus

rh1012.fits[events][columns -]

makes a copy of the header and data subspace of rh1012.�ts[events], but with an empty table/image

section. This is useful for making a �lter �le (see below). (Note: the data subspace records the

selection history of the data, e.g. GTI, PHA �lter, etc: see the data model design document).

To delete a column, use the ! operator:

rh1012.fits[columns !pha]

To add a new column onto the table at the end (rightmost position),

rh1012.fits[events][columns *,status]

rh1012.fits[events][columns #all,status]

adds a column called status. This isn't very useful as it stands, since we don't know what to put

in status. It will default to a 4 byte integer column �lled with zeroes. By combining this with the

renaming syntax, you can copy a column:

5

rh1012.fits[events][columns *,pi=pha]

so now there is a pi column whose contents are identical to the pha column. A more useful appli-

cation will come with the support for interpolation on external tables (see below).

Finally we can specify the desired name of the output table, although this may be overriden by

some applications:

rh1012.fits[mytable][columns pha,time][newtable]

The required ordering of the quali�ers is intended to re
ect a logical ordering of the operations:

�rst an input block is chosen, then it is �ltered on rows, then on columns, and �nally it is sent to

a named output block.

2.3 Filtering on an external �lter

Often we may want to �lter several datasets on the same set of conditions. In particular, we want

to select rows matching the same conditions as we selected for another �le. The syntax

rh1012.fits[events][@source3.pha]

uses the data subspace of the �le source3.pha as its �lter. It intersects that data subspace with the

data subspace of rh1012.�ts[events]. It doesn't care whether or not source3.pha is just a �lter (a

data subspace with no table data) or whether there is a lot of data hanging on the end; such data

is just ignored.

We also want to be able to store a string �lter expression in an ASCII �le for use in this way.

The best way to support this would be for our eventual ASCII �le kernel to the data model to

recognizes such expressions as a data subspace de�nition.

2.4 Filtering on row number

Sometimes we want to �lter explicitly on the row number of the original table. To support this we

introduce a `fake column' called #row which always has the value of the row number (prior to any

other �ltering). For example:

rh1012.fits[events][#row=200,300,pha=10:20]

would select only rows 200 to 300 of the table, and then further �lter on only those rows which have

pha from 10 to 20.

6

2.5 Control over data subspace

Suppose that we have a table hk with columns TIME and STATUS (among others). By default the

virtual table

rh1012.fits[hk][status=5:10]

will have a data subspace which is the intersection of the original [hk] data subspace and the new

condition status=5:10. This re
ects the requirement `give me all the rows whose status was from

5 to 10'. But sometimes we want a table with `give me all the rows for times when the status was

from 5 to 10'. The distinction is that if you then �lter another table using the data subspace of

your result, you want it to be a time �lter rather than a status �lter. (This is the functionality of

the PROS tim�lter task, but we want the capability to make �lters on other quantities rather than

just time). The virtual table

rh1012.fits[hk][status(time)=5:10]

has a data section identical to the previous example, but a data subspace with a new time �lter

instead of a status �lter. It considers status as a function of time, rather than as an independent

variable in its own right.

The virtual table

rh1012.fits[hk][status(hktime=time)=5:10]

is the same, but renames the time column in the data subspace to be called hktime.

2.6 Filtering on external tables

Another long-term goal of our �ltering capability is to support easy interpolation �ltering on external

tables. For example, suppose that the table called EVENTS in �le rh1012.�ts contains a column

TIME and rows representing photons. Suppose further that the �le rh1012 ephem.�ts contains

a table ORBIT whose columns include ones named EPHTIME and HEIGHT, where EPHTIME

contains values on the same timescale as TIME. Then we want to select records from EVENTS

whose TIME value is such that the corresponding HEIGHT in the ORBIT table is above 10000 km

(e.g. 'give me only photons above the radiation belts'). Currently to do this we would run several

tools:

asc_copy rh1012_ephem.fits[orbit][height(ephtime)>10000.0] time_filter

asc_rename_column time_filter ephtime time

asc_copy rh1012.fits[@time_filter] result

Eventually we would like to do:

7

asc_copy rh1012.fits[events][rh1012_ephem.fits[orbit]height(time=ephtime)>10000.0] result

but that won't be supported initially. The same syntax would allow a simpler case if the column

in the ORBIT table was named TIME not EPHTIME, and if the ORBIT table was in the same

dataset:

asc_copy rh1012.fits[events][[orbit]height(time)>10000.0] result

We'd also like to do

asc_copy rh1012.fits[events][columns pha,time,[orbit]height(time)] result

which would add a new column called `height' to the result[events] table whose values would be

interpolated from the height versus time table in [orbit].

3 Virtual images

3.1 Basic syntax

The same simple syntax as before:

rh1012.fits

rh1012.fits[2]

rh1012.fits[exposure_map]

may also refer to an image. If the base datablock is also an image, the image is opened directly.

If the base datablock is a table, the image must be created by binning columns of the table. By

default, a 2D image is created by binning the �rst two columns of the table (or the �rst column

if that column is 2-dimensional, e.g. `detpos'). If `preferred axes' are de�ned in the table, those

columns are used instead.

A row-�ltered table:

rh1012.fits[events][pha=4:8,time=100:200,400:500]

may also be used as input to a virtual image; in this case the rows are �ltered prior to image binning.

If the base datablock is an image, the same syntax implies an image section on the named axes.

3.2 IRAF notation

The old IRAF image section notation is

rh1012.fits[100:200,100:400]

which is equivalent to

rh1012.fits[#1=100:200,#2=100:400]

8

3.3 Binning

If we want to make an image on columns which are not the default columns, we use the syntax

rh1012.fits[bin pha,time]

This is the replacement for the old PROS key= syntax. The fact that the keyword 'bin' is

followed by a space and not = allows us to recognize that this grouping is a binning command and

not a �lter on a column named 'bin'. We may also want to support the 'key=' syntax as a back

compatibility option.

These binning operations on tables use a bin size of 1. If you want to use a di�erent bin size

and axis range, the syntax is

rh1012.fits[bin pha=4:10:2,time=100:200:10]

which makes a 2D image of counts versus pha and time, with the pha axis having 4 pixels running

from 4 to 10 in steps of 2. or

rh1012.fits[bin energy=5:10:0.02]

which makes a 1-D image of counts versus energy (i.e. a spectrum), or

rh1012.fits[bin detpos=(100:900:4,200:1100:4)]

which makes a 2-D image (in the data model spec, an image with one 2-dimensional axis group) of

counts versus detector position. or in general

block_name[bin name=min:max:step,name=min:max:step,...]

To �lter and bin,

rh1012.fits[myevents][pha=2:7,y=1000:1100][bin pha=4:10:2,time=100:200:10]

Note that this makes a 2-D pha, time image which is 4 x 10 pixels in size, but the pixels with pha

more than 7 will be zero since those pha values were �ltered from the table.

To �lter on a spatial region,

rh1012.fits[myevents][(x,y)=circle(4096,4096,5)&!box(4100 4200 128 128),pha=2:7]

Any two columns may be grouped together to make a two dimensional quantity to which region

�lters apply;

rh1012.fits[myevents][(pha,time)=circle(4096,4096,5)&!box(4100 4200 128 128)]

although data model-compatible �les may also contain prede�ned two-dimensional columns which

may be accessed either by overall name (e.g. 'detpos') or by grouped component names (e.g.

'(detx,dety)').

9

rh1012.fits[myevents][detpos=circle(4096,4096,5)&!box(4100 4200 128 128),pha=2:10]

To block an image by a given factor,

rh1012.fits[bin detpos=4]

or

rh1012.fits[bin (detx,dety)=4]

which is equivalent to the old

rh1012.fits[key=detx,dety][bl=4]

The bl=n blocking option would now by default be interpreted as a �lter on a column called 'bl'.

Again, back compatibility support is a possibility.

If we are binning on the default columns, we can omit the names:

rh1012.fits[bin 4:10:3,100:200:10]

rh1012.fits[bin 4]

Finally we can specify the output image array name. There are two names to specify: the name

of the image datablock (for example 'energy time image') and the name of the array quantity itself

(for example 'counts' or '
ux'). By default these two names are the same if they are not separately

speci�ed. We can also specify an intensity �lter which must come after the binning

rh1012.fits[bin detpos=4][det_image]

rh1012.fits[bin detpos=4][det_image counts]

rh1012.fits[bin detpos=4][det_image counts=10:100]

rh1012.fits[bin detpos=4][det_image counts>50]

4 General syntax

4.1 Summary of syntax

Combining all the above speci�cations, our most general syntax is

dataset name[block id][�lter-command][columns column-list][output-command]

for a table speci�cation and

dataset name[block id][�lter-command][bin binning-list][output-command]

10

for an image speci�cation

where

� block id := block name or block number

� column-list := column-spec,column-spec...

� column-spec := column name or (column name,column name...) or new name = column name

or (new name=column name, column name)

� �lter-command := �lter-component or (�lter-component)j(�lter-component)j...

� �lter-component := �lter-spec,�lter-spec,...

� �lter-spec := column-spec=�lter or function(column-list)=�lter

� �lter := range-list or region-expression

� range-list := range,range,...

� range := min:max or min: or :max or value

� region-expression := region region-op region region-op region ...

� region-op := & or &! or j or j!

� output-command := block name or block name array name or block name array name =

�lter

� binning-list := binning-spec,binning-spec,...

� binning-spec := column-spec or column-spec = binning

� binning := min:max:step or min:max or step or min::step or min: or :max or ::step

5 Detailed speci�cation

5.1 Overall syntax

� The virtual datablock speci�cation consists of a string consisting of a `base dataset' name and

a series of quali�er sections.

� Each quali�er section is a string delimited by square parentheses [].

� The possible quali�ers are:

11

{ block identi�er

{ �lter-command

{ column select/bin-command

{ output-command

Any quali�er may be omitted, but those which appear must appear in this order.

� There may be at most one of each type of quali�er in a speci�cation. If multiple cases of

a quali�er are present, all but the �rst should be ignored. However, a future revision of

this document will include `stack syntax', which will provide an interpretation for multiple

quali�ers.

� There are two kinds of virtual datablock speci�cation: a table speci�cation and an image

speci�cation. The allowed forms of the select/bin-command and the output-command di�er

in those cases; however, whether a given string is a table spec or an image spec depends on

external context, and cannot in general be determined from the string itself.

� A column-select or bin command quali�er may be recognized by the fact that it begins with

the text 'columns' or 'bin' followed by a space followed by further text.

� A block identi�er may be recognized because it consists of only a single word.

� An output command may be recognized because it consists of either a single word, or a single

word followed by a space and other text, and it cannot be a block identi�er because it is not

the �rst quali�er, and it cannot be a select/bin command because the word is not 'select' or

'bin'.

� A �lter command can be recognized because it does not match any of the other quali�ers.

5.2 Base dataset

The base dataset identi�es the input dataset (�le or �les).

� The base dataset name is the name of a �le on disk. (Note that in the case of the ASC/ETOOLS

IRAF/QPOE kernel, this �le is a directory). The full �lename should be given including any

extension. URLs are not currently supported.

� If the base dataset name is `-' (dash), standard in is intended.

� If a virtual datablock speci�cation is stored in a dataset (for instance a �le is �ltered and the

�lter command is recorded in the �le) the leading base dataset name may be omitted if it is

the dataset that the speci�cation is being stored in. That will allow a dataset to have cross

12

references to other tables within itself, without those cross references being broken when you

rename the dataset.

� If no base dataset name is given and no dataset is otherwise speci�ed to the software, the

meaning is unde�ned. One possibility is that one should search for the block identi�er within

all datasets in the current path. For instance, one might refer to [ASPECT] and hope that the

software will scan all the datasets in the current directory looking for a table called ASPECT.

However, this functionality will not be supported for the time being as there are a lot of

potential problems with it.

5.3 Block identi�er

The block identifer speci�es the input ASC Datablock (table or image) within the selected dataset.

� The block identi�er, if present, must be the �rst quali�er section.

� The block identi�er consists of a single word which may contain letters, digits, and the char-

acters . (dot), - (minus), + (plus), / (slash), (underbar), # (hash), $ (dollar), ; (semicolon),

(and) (round parentheses). Some other characters may also be accepted, but it may not

contain whitespace or the characters comma (,), bar (j), square parens ([,]), equals (=), colon

(:).

� If the block identi�er consists only of digits, and represents an integer n which is less than 10

or less than the number of ASC tables in the dataset, the interpretation is that it refers to

the nth ASC table in the dataset, counting from 1. The block identifer [0] is considered to be

the same as [1].

� If the block identi�er is empty, i.e. [], the �rst ASC Datablock in the dataset is implied.

� If no block identi�er is present, the �rst ASC Datablock in the dataset is implied. So the

following

rh1012.fits

rh1012.fits[]

rh1012.fits[0]

rh1012.fits[1]

are all identical.

� Otherwise, the block identi�er is interpreted as the name of an ASC Datablock within the

dataset.

13

5.4 Filter-command

If the base dataset is a table, the �lter-command quali�er selects rows from the table. If the base

dataset is an image, the �lter-command quali�er selects an image section.

� A �lter command is an external �lter command, a standard �lter command, or a compound

�lter command.

� A standard �lter command consists of only a single �lter component.

� A �lter component consists of a comma-separated list of �lter speci�cations; the complete

�lter component is the logical AND of all of the �lter speci�cations.

� A �lter speci�cation may be either a range �lter, a relational �lter, a region �lter, or a

functional �lter.

� Each of these types of �lter speci�cation incorporates references to the names of column or

axis descriptors or the row number. If the descriptor name consists of the symbol # followed

by an integer, and the integer is less than or equal to the number of columns or axes in the

ASC datablock, then the name is interpreted as referring to that numbered column (if a table)

or axis (if an image).

� If the descriptor name contains the character [, it refers to a quantity in another datablock.

We eventually want the ability to �lter on a quantity interpolated from another table.

� Otherwise, the name must be one of the header, column or axis names or component names

in the datablock.

� The entire �lter component may optionally be enclosed in parentheses.

� An external �lter command consists of the character @ followed by the name of a datablock

(precisely, a virtual block command with only the dataset and block ID's), for example

rh1012.fits[events][@tmp12.fits[2]]

The data subspace of the speci�ed datablock is opened and used to �lter the input datablock.

� An external �lter command may also be an ASCII �le containing a valid �lter speci�cation.

For example,

rh1012.fits[events][@my.filt]

where the �le my.�lt consists of the single line

14

pha=4:10,detpos=circle(54,52,2)

� A compound �lter command consists of a set of �lter components in round parentheses and

separated by the j character, thus:

(F1)j(F2)j(F3)

This implies the logical OR of each of the restrictions F1, F2, F3. However, some applications

may not be able to handle more than one �lter component, and so multiple �lter components

should be avoided where possible.

5.5 Names and renaming in �lter commands and select/bin commands

A descriptor name in a range, relational or region �lter may be expressed in several ways:

� The name itself, which must be a data descriptor name or data descriptor component name in

the input datablock. This is interpreted as generating a �lter involving a restriction on that

descriptor.

� A name #1, #2, etc. referring to a numbered column or axis.

� A pair of names separated by commas and enclosed in round parentheses, thus for example

(detx,dety). This de�nes a 2-dimensional descriptor from two one-dimensional descriptors or

component names.

� The special name #row is allowed for a �lter command in a table datablock only. It points to

a fake data descriptor whose value is the number of the row in the current input datablock,

and so supports the ability to �lter on row number.

� text of the form `newname=descriptorname'. This has the e�ect of generating a �lter on the

given descriptor, but in the data subspace of the output table the �lter is recorded as being

on 'newname'.

� text of the form `descriptorname(var)'. Example:

rh1012.fits[events][height(time)=10:30]

This has the intent of considering height as a function of time rather than as an independent

variable. The �lter generated will be a �lter on those values of time for which height will be

in the indicated range. The only di�erence in the output is that the output datablock's data

subspace has a time �lter rather than a height �lter. This can be used in conjunction with

the select none command to generate a time �lter from a housekeeping �le.

15

rh1012hk.fits[hk][voltage(time)=10:30][columns #none]

generates an empty table with a data subspace time �lter for times where voltage was in the

given range.

� We can also use the variable renaming syntax on the independent variable:

rh1012hk.fits[hk][voltage(vtime=time)=10:30][columns #none][myfilter]

which renames the variable time in [hk] to vtime in [my�lter].

� We can refer to a quantity in a datablock (we'll call it the external datablock) which is not the

base datablock, provided we give a way to give that quantity meaning in the base datablock.

We can provide this meaning if there is a common column in the two datablocks. We then

consider the external datablock as a lookup table of the new quantity considered as a function

of the common column. If the external datablock is in the same dataset, we just pre�x the

quantity name with the datablock ID. If it is in an external dataset, we pre�x with the dataset

name and datablock ID.

Example: If the [hk] and [events] tables both contain a column called time, and [hk] is sorted

on the time column, and [hk] has a column called voltage, then we can �lter the table [events]

on voltage by using the hk table to interpolate voltage versus time. Because there may be

several columns in common, we must call out the common column explicitly:

rh1012hk.fits[events][pha=4:10,[hk]voltage(time)=10:30]

rh1012hk.fits[events][pha=4:10,my.fits[hk]voltage(time)=10:30]

The output data subspace has a �lter on time rather than voltage.

� Once again, we may perform variable renaming on the independent variable of the external

reference. This may be necessary if the name of the `common' column is di�erent in the two

tables.

rh1012hk.fits[events][pha=4:10,[hk]voltage(time=hktime)=10:30]

5.6 Range �lters

� A range �lter de�nes a restriction on a scalar data descriptor (a column in the table or a

scalar axis in the image). It consists of the name of the descriptor followed by an equals sign,

followed by a range list.

� If the name alone is used, without an equals sign or range list, it must be a quantity of logical

data type.

16

� A range list is a comma-separated list of ranges.

� Each range de�nes a minimum and maximum value. In the most general form, the minimum

and maximum are given separated by a colon. The range is a closed interval on the real line.

Several abbrevated forms are supported:

{ min:max

Range from min to max.

{ min:

Range from min to the maximum legal value (TLMAX) of the quantity.

{ :max Range from the minimum legal value (TLMIN) to max.

{ val

A single value is equivalent to val:val, a range with only one value.

In addition the following interval-de�nition formats are de�ned, but not yet supported. They

are noted here because of their implications for parser design.

{ [min:max], an explicitly closed interval, equivalent to the usual min:max.

{ (min:max), an open interval.

{ [min:max) or (min:max], a semi-open interval.

Since these formats would follow either the equals sign or a comma, they cannot be confused

with the opening parenthesis of a new quali�er section or �lter component.

5.7 Image sections

A special variant of range �lters is the image section syntax, when the names of the quantities are

omitted and only one range is permitted for each quantity. In this case, the quantities are assumed

to be #1, #2, etc. in order. Thus

rh1012.fits[events][4:8,1012:1234,10:20]

is equivalent to

rh1012.fits[events][#1=4:8,#2=1012:1234,#3=10:20]

If Image section syntax is used, it may not be mixed with other kinds of �lter command.

17

5.8 Relational �lters

The range �lter

pha = 1:10,80:300,51:100

is read as: `the list of restrictions on pha is ...'. An alternative �lter syntax

pha op value

may be read as `true if pha op value'.

The supported operators are

� >, greater than

� <, less than,

� >=, greater than or equal

� <=, less than or equal

� ! =, not equal to

5.9 Region �lters

� A region �lter consists of a name followed by an equals sign followed by a region expression.

The name must refer to a two-dimensional quantity.

� A region expression is a set of region elements joined with the logical region operators &

(and), j (or) ^ (exclusive or) and ! (not) and grouped with round parentheses.

� The region elements de�ne shapes in a two-dimensional plane. Each region element has two

forms: the element name followed by round parentheses containing a comma-separated list of

parameters, or the element name followed by a space-separated list of parameters terminated

by a comma, a region operator, or the closing square parenthesis of the quali�er. Each region

element name also has an abbreviated form.

� Allowed region elements are

{ CIRCLE(xcen ycen radius)

{ ANNULUS(xcen ycen rad1 rad2)

{ BOX(xcen ycen width height angle)

{ ELLIPSE(xcen ycen width height angle)

{ PIE(xcen ycen radius angle1 angle2)

18

5.10 Functional �lters

A functional �lter de�nes a restriction based on the value of a function of one or more named

quantities. For example,

dist(x,y,40,20)<5

which is equivalent to the region �lter

(x,y)=circle(40,20,5)

The list of supported functions is:

� sin(x)

� cos(x)

� exp(x)

� ln(x)

� log(x)

� max(x1,x2)

� min(x1,x2)

� eval(expression)

The last of these, EVAL, is a placeholder to support generic algebraic expressions on quantities.

For instance, one might eventually want to support a restriction

PHA + PI > 2 * log(ENERGY)

Rather than complicate the parser trying to recognize this as one of a comma-separated list of �lter

expressions, we will require that the EVAL keyword be used to mark o� such expressions, as:

rh1012.fits[events][time=100:500,eval(pha+pi>2*log(energy)),(x,y)=circle 5 5 3]

eval is a reserved name corresponding to a pseudo-quantity whose data type is logical.

19

5.11 Select command

The select command selects columns for an output table. For an image, it speci�es the names

and ordering of output axes, and is interpreted as a bin command. A bin command and a select

command may not be present in the same virtual datablock speci�cation.

� The select command is recognized by the parser as a quali�er which begins with the word

COLUMNS followed by a space followed by other text.

� The select text consists of a comma separated list of column speci�cations.

� The reserved column speci�cations #all (synonym *) and #none (synonym -) denote selection

of all of the columns of the input table or none of them respectively.

� Omitting the select command is equivalent to [columns *].

� The column speci�cation newname=oldname renames a column from oldname to newname.

� The column name #n, where n is an integer, denotes the nth column in the base datablock.

� The speci�cation !name means delete that column. It is only useful when no other columns

are positively selected. Thus

rh1012.fits[events][columns !pha,!status]

rh1012.fits[events][columns *,!pha,!status]

each make a table with all the columns of [events] except pha and status, but

rh1012.fits[events][columns time,!pha,!status]

makes a table with only time, and the !pha,!status commands are redundant.

� An external column name may be given, as in the �lter command. Example:

rh1012.fits[events][columns time,pha,ecal.fits[ecaldata]energy(pha)]

selects columns time and pha from the rh1012.�ts[events] table and makes a new column

energy, whose values are found by taking the pha values for each row in [events] and evaluating

the corresponding value of energy in ecal.�ts[ecaldata].

20

5.12 Binning command

The binning command is only allowed for image speci�cations. An image speci�cation de�nes a

virtual image (of arbitrary dimension 1, 2, 3, ..., etc) in terms of an input image or table. In the

�rst case, it is a rebinning of the original image; in the second, it bins certain columns of the table

to form an image.

The binning command de�nes the axes of the output image and their de�nition in terms of the

quantities in the input image or table.

� The binning command quali�er starts with the word 'bin' followed by a space followed by the

binning list.

� The binning list is a comma-separated list of binning speci�cations, each of which de�nes one

axis or axis group.

� The simplest kind of binning speci�cation is a name. The name speci�es that that axis is

next in the ordering. If the base datablock is a table, the corresponding column will be used

binned on. The axis will extend from TLMAXn to TLMINn in steps of size 1.0. Example:

rh1012.fits[events][bin pha,time]

makes a pha versus time image.

rh1012.imh[bin #2,#1]

transposes the input image, making axis number 2 in the old image be axis number 1 in the

new image.

� The axis may be renamed by preceding it with the new name and an equals sign. Example:

rh1012.fits[events][bin pha,sctime=time]

makes a pha versus time image.

rh1012.imh[bin dety=#1,detx=#2]

rh1012.imh[bin detpos(detx=#1,dety=#2)]

� The name may be followed by an equals sign and a binning. The binning speci�es a start

value, a stop value and a step size in the form min:max:step. The defaults are TLMIN,

TLMAX and 1.0. Alternate forms supported are:

{ min:max:step

21

{ min:max

{ min:

{ :max

{ step

{ ::step

{ min::step

{ :max:step

The only potential parsing confusion is with the case with no colons, where there is con
ict

with a column/axis name whose name is the same as the step size. For instance, does

rh1012.fits[bin pha=4]

mean 'bin pha by 4' or 'bin a column called '4' by 1 and rename it pha'? Another good reason

to not give columns numeric names. In this case we will require columns in the binning spec

to not have numeric names - if you do have such a column, you'll have to use the #n notation

to reference it.

� For multi-dimensional columns or axes, the syntax is to have a comma-separated list of bin-

nings, one for each axis, enclosed in round parentheses.

rh1012.fits[bin detpos=(1012:4096:4,2048:4096:4)]

As a special helper, replacing this grouping by a single integer is interpreted as a step size

(blocking factor) applying to all axes, so these are equivalent:

rh1012.fits[bin (detx,dety)=(4,4)]

rh1012.fits[bin (detx,dety)=4]

5.13 Output command

The output command allows the user to specify the name of the output datablock.

� For a virtual table speci�cation, the output command must be a simple name, which names

the output table datablock.

� If the output command is absent, the output datablock has the same name as the input

datablock. (The output dataset name is determined by the application, not by the syntax

de�ned here).

22

� If the output command is present, another quali�er must also be present to avoid ambiguity

with the block identi�er. Thus

rh1012.fits[events]

speci�es an input datablock, while

rh1012.fits[][events]

speci�es an output datablock.

� For a virtual image speci�cation, the output datablock name may optionally be followed by a

space and the name of the data quantity, or may be enclosed in an extra set of square parens

and followed by the data quantity name. Example:

rh1012.fits[events][bin pha][spectrum counts]

rh1012.fits[events][bin pha][[spectrum]counts]

bins the [events] table on pha and makes a 1-D array called counts in an image datablock

called [spectrum]. The �rst form is a little less ugly, but the second form is more consistent

with the rest of the syntax.

� If the data quantity name is missing, it is given the same name as the output data block.

Thus

rh1012.fits[events][bin pha]

is equivalent to

rh1012.fits[events][bin pha][events events]

which is probably not what you want, but unless we provide some hints in the input �le about

how to name binning products, I don't see a generic way around it.

� For a virtual image speci�cation, the name of the data quantity may be provided in the form

of a range or relational �lter. In an image, the datablock name is used as an alternate data

descriptor name for the pixel values in the image. Thus, a �lter on the datablock name implies

an intensity �lter on the image.

asccopy rh1012.fits[events][bin pha][spectrum counts>10] result

is equivalent to

asccopy rh1012.fits[events][bin pha][spectrum counts] tmp

asccopy tmp[spectrum][counts>10] result

23

