FITS Keyword Conventions in CXC Data Model files
SDS-7.3

Jonathan McDowell

November 10, 2002

Contents

1 Introduction 2

2 Summary of keywords 2

3 CXC Data Model Conventions 3
3.1 Notes on existing FITS special cases 3
3.2 Thenameofan HDU 4
3.3 Extra information for compound columns 4
3.4 Support for preferred columnsoraxes. 6
3.5 Extra information for header keys 6
3.6 Array keywords 7
3.7 Images 8
3.8 Coordinate Systems L 8
3.9 Coordinate systems on image block axes 9
3.10 Keywords for recording filters 10

1 Introduction

This document describes some of the FITS keywords used in Chandra data files. The summary
lists them and the remainder of the document describes some of them in more detail.

2 Summary of keywords

Data model keywords:

CNAMEn Override CTYPEn image coordinate axis name

CPREF List of 'preferred cols’ for making image from table

DSTYPn Data Subspace column name

DSFORMn Data Subspace data type name (optional)

DSUNITn Data Subspace unit name (optional)

DSVALn Data Subspace filter list

iDSVALn Same as DSVALn for component i

DSREFn Data Subspace table pointer

iDSREFn Same as DSREFn for component i

DTYPEn Name for composite long-named keyword (cf. CFITSIO HIERARCH)
Also used to define array keywords

DUNITn Unit for composite keyword

DVALn Value for composite keyword

HDUNAME Gives a name to an HDU (defaults to EXTNAME/EXTVER)

METYPk Type of composite column (not yet supported)

MFORMk Comma-separated list of column names making up composite col (with MTYPE)

MTYPEk Composite column name (paired with MFORM)

TCNAMn Override TCTYPn table coordinate axis name

TDBINn Default binning factor for table column

TDNULLn Allows for floating point null value other than NaN

Also note use of CTYPEnNP to represet a ‘physical’ linear coordinate system mapping blocked
(rebinned) to original pixels.

Also note the special values CTYPEi = 'LONG-TAN’, CTYPEj = 'NPOL-TAN’ defining a
nonstandard WCS with the latitude equal to zero rather than 90 at the pole, useful for representing
a telescope off-axis angle.

The following CXC standard header keywords have also been introduced:

MISSION Grouping of related telescopes
OBS_ID Observation id
SEQ_NUM Sequence number

ASCDSVER Processing system revision
DEFOCUS Defocus distance of instrument in mm rel to best
FOC_LEN Telescope focal length in mm
OBS_MODE Pointing or slewing or ground cal
DATAMODE Configuration of on-board processing
READMODE Configuration of instrument
DATACLAS Observed or simulated

ONTIME Sum of GTIs

DTCOR Dead time correction, 0.0 - 1.0
LIVETIME ONTIME times DTCOR
GAINFILE CALDRB file for gain correction
GRD_FILE CALDRB file for grade correction

MISSION was introduced to group files that included both flight data for Chandra (TELE-
SCOP="CHANDRA’) and ground calibration data for instruments and test mirrors, with different
values of TELESCOP.

OBS_ID and SEQ_NUM label the observations - SEQ_NUM refers to an individual exposure and
OBS_ID refers to a group of exposures to be processed together (although in practice it’s very rare
for there to be more than one exposure per OBS_ID).

We also use the CFITSIO convention keywords LONGSTRN, CHECKSUM, DATASUM and
the HEASARC keywords TIMESYS, MJDREF, TIMEZERO, TIMEUNIT, CLOCKAPP, TSTART,
TSTOP, TIERRELA, TIERABSO, TIMVERSN, TIMEPIXR, TIMEDEL, RA_NOM, DEC_NOM,
ROLL_NOM, RA _TARG, DEC_TARG.

3 CXC Data Model Conventions

The CXC data model implementation uses a number of new FITS header keyword conventions.
The guiding principle used in their interpretation is to select defaults so that FITS files without
such keywords will still be correctly interpreted by the data model. The new keywords are as far
as possible chosen to be analogous to existing FITS conventions.

3.1 Notes on existing FITS special cases
1. Zero-width columns (e.g. "TFORMS3 = 0I') are forbidden.
2. In header keywords, NaNs should be converted to a keyword with a blank value field:
FOO =/
In floating point binary table columns, IEEE NaNs are fine.

3. Use of TSCAL and TZERO is currently deprecated in CXC files except for the special case
of specifying unsigned integer types. Recommend use of TCRVL and TCDLT instead, with
the corresponding linear coordinate transform machinery which gives clearer information on
the intent.

3.2 The name of an HDU

In our software, each FITS HDU is given a unique name as follows:
e If HDUNAME is present, its value is the HDU name, and we ignore EXTNAME.

e If there is no HDUNAME, but EXTNAME and EXTVER are present, the name is the value
of extname concatenated with the value of extver. Example:

EXTNAME
EXTVER

> SPECTRUM’ / Spectral data
3 / Version no; CXC DM name will be SPECTRUM3

e If there is no HDUNAME or EXTVER, but EXTNAME is present, the name is the value of
EXTNAME. We recommend that EXTNAME values not end with digits, since on copying an
HDU to another file we're likely to strip the trailing digits on the assumption they’re meant
to be an EXTVER.

e If there is no HDUNAME or EXTNAME, we name the HDU to be "HDUn”, where n is the
HDU number counting the primary array as HDUL. (In earlier releases, we called it HDUO).

3.3 Extra information for compound columns

At the CXC’s high level Data Model layer, we define compound columns which may map to multiple
FITS columns. This is reflected in the FITS file with extra keywords that tie the columns together.
If these keywords are ignored, the columns are just seen as independent in the usual way.

We propose a new set of FITS header keywords to describe the extra structure on top of the raw
BINTABLE. By analogy with keywords like TTYPEn, these new keywords are indexed keywords
beginning with a common letter M (for Meta-column). The most important keywords are MTYPEn
and MFORMn, defined by the Common Data Model (CDM) discussion list. MTYPE4 = *SKY’,
MFORM4 =’X,Y’, TTYPE13="X", TTYPE14="Y’ defines a descriptor SKY composed of columns
13 and 14.

To parse a table, we use the following rules:

e The index subscript on the MTYPEn series of keywords does not impose an ordering. De-
scriptor order is imposed by the ordering of the TTYPEi keywords of the first element of each
descriptor.

Although the CDM does not require that descriptor (meta-column) components be adjacent
TTYPEi columns, we will require this for the time being.

Starting with TTYPE1, we examine the next TTYPEi which has not already been marked
as a component.

If the TTYPEi value appears as the first item in any MFORMn, we have a new compound
column whose name is the value of the corresponding MTYPEn and whose component names
are the comma-separated items in MFORMn. We identify the remaining component names
with TTYPEi values and mark those TTYPEs as components. The element dimension and
element type are inferred from the number of component names and the value, if any, of
METYPn (see later discussion).

If the TTYPEi value does not appear in an MFORMn, we have a new (non-compound) column
whose name is the value of TTYPE], and whose element dimension is 1 and element type (see
later) is V.

Continue until all TTYPEs have been dealt with.

The special keywords are:

MFORMn (string) is a comma-separated list of names (at least one name; zero is an error)
which defines a composite descriptor. Each name should be either the value of one of the
TTYPEn keywords (i.e. a FITS column name) or the name of a FITS keyword.

MTYPEn (string) gives the name of the composite descriptor defined by MFORMn.

METYPn (string) gives the Data Descriptor’s element type. Initially supported types will
be ‘V’ (value), ‘VU’ (value with one uncertainty range), ‘R’ (range, binned data’). ‘REG’
(2D region string descriptor). If absent, a default value of ‘V’ is assumed. As of Jan 2003,
METYPn support has not yet been implemented.

We note the following existing FITS keywords and their use:

TFORM;j is used to store the Data Descriptor’s data type and the number of elements per
cell, and also the string length if applicable.

TDIMj is used to store the Array Specification axes.
TUNIT] is used to store the Data Descriptor’s unit.

TTYPEj, TTYPEj+1,.. are used to store the Data Descriptor Component Names when
DCEDIMn is more than 1.

e TDISP;j is used to store the Data Descriptor display format.
e TLMINj and TLMAX] are used to store the legal range of values. This is used by us and by
HEASARC software for filtering and binning.

3.4 Support for preferred columns or axes

We expect to implement support for preferred axes prior to launch.

e CPREF (string) specifies preferred quantities: the most interesting axes, and the ones you
should bin on if no axes are specified. Its format is

CPREF
CPREF

’DETX,DETY’ / default axes to bin on
’PHA (DETX,DETY)’ / default axes to bin on, with weighting function

The optional weighting function is the name of a column to weight by, which must be a single
FITS scalar column. The binning axes can include compound column names, but not array
columns.

3.5 Extra information for header keys

On reading a FITS header, all the mandatory FITS keywords and the keywords defining the
BINTABLE/IMAGE and overlying DM TABLE structure are parsed. All remaining keywords
are interpreted as block header keys.

We introduce a new set of header keywords analagous to the TTYPEn series, for attributes.

We have implemented two different forms of FITS enhanced keyword support (to store more info
about each keyword) - the ‘long form’ and the ‘short form’. In the short form, info is packed into
the FITS comment keyword. In the long form, needed for long keyword names, separate keywords
are used.

In all the following cases, string keywords with blank or default values should be omitted (i.e.
DUNITn should not appear in the file if the unit is blank).

The short form, as per CFITSIO, is

FOO = wvalue / [unit] desc

We map a DM header key FOO to the following set of (long form) FITS header keywords:

FOO = value / [unit] desc CDM
DTYPEn = ’F00’ / CDM
DUNITn = ’unit’ / CDM
DFORMn = ’datatype’ / (CDM not implemented)

On reading, we set the name to be FOO, the unit to be first the DUNITn, next the value in ||
after the / in FOO, finally to blank if neither of the preceding are there. The comment is set to be
whatever is after the / in FOO with the exclusion of any [] token.

For long keyword names, keyword FOO is replaced by DVALn:

DVALn = value / [unit] desc CDM
DTYPEn = >LONG_KEY_NAME’ / CDM
DUNITn = ‘ynit’ / CDM

The values of n must be unique in a given HDU block, but need not be consecutive, although it
would be nicer to keep them so.
(Note that CFITSIO uses a different convention, called HIERARCH).

3.6

DTYPEn gives the name of the Data Descriptor. This keyword must be present if any of
DUNITn, DVALn, DFORMn, DDISPn, DDESCn are present, otherwise it must be omitted.

DUNITn (string) gives the unit for the Data Descriptor. If the unit is blank, it should be
omitted. The unit should also be copied to the root keyword comment as specified by the
new CFITSIO convention.

DVALn (arbitrary type) gives the element value for the attribute. If the attribute name in
DTYPEn is 8 characters or fewer, the attribute name will be used as the keyword name
instead of DVALn. On reading, the data type for the Data Descriptor is inferred from the
format of the element value.

DFORMn (string), if present, gives the data type for the element, overriding the data type
inferred from the formatting of the value header keyword and the short form type convention.
Omit for strings and signed numeric types.

MTYPEn and MFORMn and METYPn keywords may also be used to group keys.

Array keywords

Our software provides limited support for 1-D array key descriptors. Traditionally related val-
ues such as coefficients of polynomials have been written using indexed keywords, e.g. COEFF1,
COEFF2, COEFF3... This provides an obvious model for array valued keys. However, indexed
keywords have also been used for other purposes, so on read we cannot assume the presence of a
trailing digit indicates an array keyword. Also, NAXIS and NAXISn are both defined keywords,
and if we used the naive interpretation both would be descriptors with name NAXIS.

DTYPEn: We therefore require that array keys be written using the DTYPEn keyword with
the special syntax

DTYPE3 = ’COEFFx* °’

This tells the software that the COEFFn keys should be read in as a single array object rather
than as a bunch of different scalar objects with similar names.

e Here the asterisk is used to imply a set of array keywords. The general format is DTYPEn =
'NAME®*’; if NAME is less than or equal to 7 characters, the values will be stored in keywords
NAME1, NAME2, NAMEm.

e On read, the dimension of the array is equal to the largest value of i present as a NAMEi.
Missing values of i are set to zero or blank; elements of the array must be all numeric or all
string.

3.7 Images
For Image Data descriptors, the following are existing FITS keywords:

e BUNIT (string) Unit of image data values (B is for 'brightness’)
e BITPIX (integer) coded value implies the data type.
e BSCALE, BZERO values used e.g. for unsigned data types; handled by CFITSIO.

3.8 Coordinate Systems

We will store coordinate info as follows: The general transform supported by DM has the following
parameters, named according to the FITS keywords used in the FITS IMAGE implementation...

Dimension n

Transform type (string): ctype

Number of transform function parameters m (depends on ctype, usually = zero)
Transform function parameters (doubles): propl to propm

Reference pixel: crpixl to crpixn

Reference value: crvall to crvaln

Reference scale: cdeltl to cdeltn

Rotation angle: crota (only used in 2D case)

Rotation matrix: cd(n,n)

CDELT and CROTA have been deprecated in favor of the CD matrix, but we use them anyway.

We distinguish between the first transform on a particular descriptor, which is considered the
principal transform, and subsequent transforms. Slightly different keywords are used for principal
and other transforms. In addition, different keywords are used for transforms for the following
descriptor cases:

1) the axes of an image data array (Axis number j)

2) a table scalar column (FITS column number i)

3) the axes of a table array column (FITS column number i, axis p); not yet supported.
4) values of an image data array (not yet supported).

For the principal transform: (these are HEASARC proposed keywords)

Case 1 2 3
ctype CTYPEj TCTYPi pCTYPi
crpix CRPIXj TCRPXi pCRPX1
crval CRVALj TCRVLi pCRVL1
cdelt CDELT} TCDLTi pCDLTi
crota CROTAj TCROT1 pCROT1
cd CDjj TCDii ppCDi

For subsequent transforms: (case 3 not supported; these are ADASS FITS BOF proposed
keywords)

Case 1 or 2

ctype CTYPEjk
crpix CRPIXjk
crval CRVALjk
cdelt CDELTjk
crota CROTAjk
cd CDjjk

In this case k is a single upper case letter from A to Z. We reserve the choice of the letter P to
flag the physical coordinate transform (IRAF’s LTM/LTV) which maps original pixels to current
logical pixels.

3.9 Coordinate systems on image block axes

Traditional use of CTYPE: Construction of the CTYPE keyword (or TCTYP, etc): In a classic
piece of broken design, we use CTYPE to store both the name of the coordinate descriptor quantity
and the name of the projection. The hack is as follows: for now, we support only 1-D LINEAR
transforms and 2-D WCS spherical projections. if the transform is not LINEAR, it must be one
of the WCS projections. In this latter case, there are a pair of CTYPEs, CTYPEn and CTYPEm
(hopefully with m = n + 1). The value of each of these is an 8 byte string; the first 4 bytes contain
the axis name padded with trailing dashes, and the last 4 bytes contain the transform code padded
with leading dashes. The only allowed value pairs for the axis names are:

RA—- DEC- Equatorial

GLON GLAT Galactic

ELON ELAT Ecliptic

HLON HLAT Helioecliptic

SLON SLAT Supergalactic

PLON PLAT Planetary

XLON XLAT Generic latitude and longitude

We add the extra names
LONG NPOL Generic with north polar angle not latitude

This is used only with the TAN transform and is useful for a WCS for telescope off-axis angle and
azimuth.

The allowed values for the transform type include:

-TAN, -AZP, -SIN, -STG, -ARC, -ZPN, -ZEA -AIR, -CYP, -CAR, -MER, -CEA, -COP, -COD,
-COE, -COO, -BON, -PCO, -GLS, -PAR, -AIT, -MOL, -CSC, -QSC, -TSC.

If the CTYPE value does not include the dash character ’-” in byte 5, we may assume it is a
LINEAR transform in which case the descriptor name is the full value of CTYPE.

For the CXC DM we introduce the following extra keyword:

e CNAMEn (TCNAMn for tables) Name of axis (overrides value of CTYPEn, used in case
where CTYPE is not a LINEAR transform to override the standard component names like
RA and DEC; i.e. when XLON and XLAT are present in CTYPE.)

We also support the use of MTYPEn, MFORMn for defining composite axes. Their use is

entirely analogous to their use with table columns.

3.10 Keywords for recording filters

This section describes the keywords used by the CXC DM Data Subspace code.
Suppose we filter a file with the constraint

MASS = 14.2:230.1,GRADE=1:5,10:12,14:23

In the output FITS file this will be recorded as

DSTYP1 = ’MASS’ / Rest Mass

DSUNI1 = ’kg ’ / Unit for DSTYP1

DSVAL1 = ’14.2:230.1° / Range for DSTYP1
DSTYP2 = ’GRADE’ /

DSVAL2 = ’1:5,10:12,14:23° / Ranges for DSTYP2

10

The example GRADE above but with 30 values instead of 3 would be better stored as a table,
as follows:

DSTYP2 = ’GRADE’ /
DSVAL2 = ’TABLE’ / Values are in a table
DSREF2 = ’:GRADE_FILTER’ / Name of table

and in an HDU elsewhere in the file:

XTENSION="BINTABLE’

NAXIS1 = 8

NAXIS2 = 30

TFIELDS = 2

TTYPE1 = ’GRADE_MIN’
TFORM1 = ’1J°

TTYPE2 = ’GRADE_MAX’
TFORM2 = ’1J’

EXTNAME = ’GRADE_FILTER’
MTYPE1 = ’GRADE’

MFORM1 = ’GRADE_MIN,GRADE_MAX’
METYP1 = ’R’

similar to the GTI table given above. The colon before the table name was recommended as part
of a broader scheme to specify URLs for FITS HDUs; I'm not sure how standard it will be.

When there is more than one DSS component, we need to generalize these keywords. We prefix
abbreviated versions of the keywords with the DSS component number:

e iDSVALj instead of DSVAL;j
e iDSREF]j instead of DSREF]

e The same filter (value of j) in components 2 onwards must share the same name (DSTYP]),
unit (DSUNIj), and data type. So we don’t need keywords for those.

The presence of an iDSVAL]j (or iDSREFj) keyword for any value of j implies the existence of
component i. If iDSVALj exists but iDSVALk does not, the value of iDSVALk is assumed to be the
same as DSVALk. The idea here is that components will often have many filters in common, and
just a couple that are different.

Here is an example with components: it represents a merged spectrum list with different extrac-
tion radii for different energies.

11

DSTYP1 = ’ENERGY’ / Energy

DSUNI1 = ’keV ~’ / Unit for DSTYP1

DSTYP2 = ’RADIUS’ / Extraction radius

DSUNI2 = ’pixel’ / Unit for DSTYP2

DSTYP3 = ’GAIN’ / Calibration gain

DSVAL1T = ’0.1:2.0° / Range for Energy

DSVAL2 = ’14° / Extraction radius

DSVAL3 = ’2:’ / Range for gain

2DSVAL1 = ’2.0:5.0,8.0:10.0” / Energy range, 2nd component
2DSVAL2 = ’30° / Extraction radius

This means that the data contains energies in the range 0.1 to 2.0 keV extracted in a radius of
14 pixels (around some point), and also energies in the ranges 2 to 5 and 8 to 10 keV, all extracted
in a radius of 30 pixels. The data was also selected in all cases for a gain between 2 and infinity.
(there is no 2DSVAL3 so the gain for the second component is assumed to be the same as for the
second component, i.e. DSVAL3) Datasets like this usually arise from merging two datasets with a
single component in their data subspace. One might write the above DSS as a logical expression:

{ [(ENERGY in 0.1:2) AND (RADIUS = 14)] OR
[(ENERGY in 2:5,8:10) AND (RADIUS = 30)] }
AND (GAIN >2)

Another more realistic case is multiple GTIs for different ACIS chips:

DSTYP1 = ’CCD_ID’ / Chip number

DSTYP2 = ’TIME’ / Time

DSUNI2 = ’s ’ / Unit for DSTYP2
DSTYP3 = °’PHA ° / PHA

DSVAL1 = 0 / Chip ACIS-IO

DSVAL2 = ’TABLE’ / DSTYP2 ranges are in BINTABLE HDUs
DSREF2 = ’:GTIO’ / Good times for chip O
DSVAL3 = ’2:1024’ / Good PHA range
2DSVAL1 = 1 / Chip ACIS-I1

2DSREF2 = ’:GTI1’ / Good times for chip 1
3DSVAL1 = 2 / Chip ACIS-I2

3DSREF2 = ’:GTI2’ / Good times for chip 2
4DSVAL1 = 3 / Chip ACIS-I3

4DSREF2 = ’:GTI3’ / Good times for chip 3
5DSVAL1 = 6 / Chip ACIS-S2

S5DSREF2 = ’:GTI6’ / Good times for chip 6
6DSVAL1 = 7 / Chip ACIS-S3

6DSREF2 = ’:GTI7’ / Good times for chip 7

12

Note no DSUNI1 keyword is written since Chip number doesn’t have a unit. Logically this DSS
translates to:

(PHA in 2:1024) AND {
(CCD_ID = 0 AND TIME = GTIO) OR (CCD_ID = 1 AND TIME = GTI1)
OR ...}

13

