SPC. Z238. ZA79RD

&
=]

!

Astronomical Data Analysis Software and Systems X
ASP Conference Series, Vol. 238, 2001
F. R. Harnden Jr., F. A. Primini, and H. E. Payne, eds.

The FITS Embedded Function Format

Arnold H. Rots, Jonathan C. McDowell, X. Helen He, Peter E. Freeman

Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS 81,
Cambridge, MA 02138

Michael Wise
Massachusetts Institute of Technology, Center for Space Research

Abstract. We have developed a format convention that allows one to
specify an n-dimensional function in a FITS binary table, the FITS Em-
bedded Function (FEF). The format allows for enumerated values, con-
stants, and analytical functions, and arithmetic combinations of those
three. The parameters of the analytical functions may, again, be enumer-
ated, constant, or function values. The concept is intended to allow the
user to extract a multi-dimensional subimage from a FEF in the same way
one would extract a subimage from a primary array or image extension.
The format is extremely versatile and has many potential applications.
Developing a generic FEF extractor is very challenging but will allow very
cost-effective reuse.

1. Scope

The FITS standard provides for the definition of n-dimensional images of data
points, but in certain situations it can be extremely useful to have the ability to
store an image in parameterized form, as an arbitrary function of n parameters
(coordinate axes). Just as one can extract a sub-image from a primary HDU or
an image extension, one should be able to extract an n-dimensional sub-image
of enumerated values from an extension containing such a parameterized image.

In cases where the parameterization is possible, this representation effects a
huge savings in storage space. We have developed a convention that accommo-
dates arbitrary function specifications using FITS binary tables. We have called
it the FITS Embedded Function (FEF).

As an example, within the Chandra X-ray Center we have applied the FITS -
Embedded Function to the Chandra response matrix specification. As a result,
a generic FEF image extractor will be able to construct response matrices using
the FEF response matrix definition.

2. Definitions

Function tables are identified by:
HDUCLASS= ’ASC ’
479

© Astronomical Society of the Pacific * Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/abs/2001ASPC..238..479R

SPC. Z238. ZA79RD

&
=]

!

480 Rots, McDowell, He, Freeman, and Wise

HDUCLAS1= ’FUNCTION’
The function is defined by:

FUNCTION= ’<expression>’
FUNCNAME= ’<name>’

The function expression may contain the arithmetic operators +, —, *, /,
+x, and five types of operands or “parameters:”

e FTYPE:: axes of the function evaluation space; these may just be speci-
fied as a range or may also appear as a table column (TTYPE;) if other
parameters are to be enumerated along such an axis.

e DTYPE:: constants; the name is provided by DTYPE:, the value by
DVALj4, and the units by DUNIT:. This is the “constant column.”

e TTYPE:: parameters enumerated in table column i.

e VITYPE:: function components; the name is provided by VITYPE:, the
function expression by VFUNCi. This is the “virtual function column.”

o WTYPE:: arithmetic components; the name is provided by WTYPE;,
the arithmetic expression by WFUNC:. This is the “virtual arithmetic
column.”

Except for the first, these operands can be thought of as columns in the table
(real columns, constant columns, and virtual columns), and the function would
thus be an arithmetic combination of these “columns.” One should be warned,
though, that operands may be defined in terms of other operands; hence reality
is more complicated than this simplified view.

The assumption is that implementation of a FEF reader will include the
following functionality.

typedef struct {
char name[32] ;
double min ;
double max ;
int num ;

} FefParam ;

FefParam parms[n] ;
fits_file fef ;

double* image = readFef (fef, n, parms) ;

readFef returns an n-dimensional image where the lengths of the axes are set by
parms [i] .num, the names by parms [i] .name, and the minimum and maximum
by parms[i] .min and parms[i] .max, respectively. Each parms[i] .name must
correspond with an FTYPE value and the minimum and maximum values must
not exceed the corresponding FLMIN and FLMAX values. n should be equal to
FAXIS.

Extraneous columns are allowed. However, one should take care when fil-
tering on such a column (or any other, for that matter), that such filtering can
only be guaranteed to yield a valid FEF extension if all but one of the FTYPE
variables contains more than one point. Even then, it will still require that all
FAXIS: keywords are corrected.

© Astronomical Society of the Pacific * Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/abs/2001ASPC..238..479R

SPC. Z238. ZA79RD

&
1=y

!

The FITS Embedded Function Format 481

3. The Coordinate Axes

The evaluation space of the function (or the image coordinates, if you like) is
set by a set of “pseudo coordinate axis” keywords:

e FTYPE::

e FAXIS: The number of coordinate axes in evaluation space

e FAXISi: The number of points along axis i (for enumerated axes only)

e FTYPEs:: Name of axis i

e FLMINi: Legal minimum values for axis i (required for free-running vari-

ables)
e FLMAXi: Legal maximum values for axis i (required for free-running
variables)

One should distinguish between enumerated and free-running variables (coor-
dinates). The free-running variables only appear as parameters in function ex-
pressions while for enumerated variables the function value (or some parameter
value) is explicitly given for a list of the variable’s values. As an extreme exam-
ple, a measured image could be represented with one row per pixel, a column for
each coordinate, and one for the image value, where the coordinate position of
each pixel would be explicitly given on each line: all coordinates would be enu-
merated. If, on the other hand, the function were a one-dimensional Gaussian,
there would only be one free-running variable. Somewhere in between, one could
conceive of a function in z and y, where the function value is a one-dimensional
Gaussian with free-running variable z, but where the width of the Gaussian is
enumerated for all values of y.

FLMIN and FLMAX are clearly needed for free-running variables to define
the range over which the function is defined.

We shall assume that if function values are requested for values of enumer-
ated variables that fall between the enumerated grip points, the values of all
enumerated columns will be interpolated linearly. It is important to note that
the parameter values are interpolated, not the function values.

If the values of an entire row are to be held constant for a range of values
of an enumerated variable, one may specify bins by using a <FTYPE>_LO and
<FTYPE>_HI column.

In some cases (sparse images, e.g., response matrices) it is desirable to limit
the domain of a free running variable depending on the values of the enumerated

variables. This may be done by incorporating two columns for FDMIN: and
FDMAX.

4. FUNCTION Specification

The FUNCTION definition is an arithmetic expression in which the operands
may be the values of any of the following: FTYPEn, DTYPEn, TTYPEn,
VTYPEn, and WTYPEn, with operators +, —, #*, /, **, and parentheses al-
lowed, as in:

FUNCTION= ’Norm - Scale * (X2 + Y2)?
FUNCNAME= ’'HRMA_EffArea’
BUNIT = ’mm**2 !

© Astronomical Society of the Pacific * Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/abs/2001ASPC..238..479R

482 Rots, McDowell, He, Freeman, and Wise

5. VTYPE

Virtual function columns (VI'YPE3) are defined through functions:
VFUNCi = ’G(P1, P2, P3, ...; C)’

where G is chosen from a defined set of function names and where P; may be
the value of any valid operand—one of the following: FTYPEn, DTYPEn, a
constant number, TTYPEn, VIYPEn, or WTYPEn. C is the name of a pa-
rameter object or a coefficient object that is specific to the function G and
whose attributes need to be specified as C_ < name >; not all functions re-
quire a parameter object. For each parameter object attribute there has to
be one TTYPE, DTYPE, VIYPE, or WTYPE that carries its name as value.
VFIELDS specifies the number of VI'YPEs that are defined.

Note that allowing VIYPEs and WTYPEs to be used in the definition of
VTYPEs provides for the specification of nested functions. This is a powerful
capability that requires particular care to prevent recursion.

6. WTYPE

In general, arithmetic virtual columns (WTYPE:) are defined as:
WFUNCi = ’P1 =~ P2 = ...?

Where “*” denotes an arithmetic operator +, —, *, /, **, and parentheses are
allowed. P; may be the value of any of the following: FTYPEn, DTYPEn, a
constant number, TTYPEn, VIYPEn, or WTYPEn. WFIELDS specifies the
number of WTYPEs that are defined.

Acknowledgments. This project is supported by the Chandra X-ray Cen-
ter under NASA contract NAS8-39073.

© Astronomical Society of the Pacific * Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/abs/2001ASPC..238..479R

